2022年廣東省深圳市育才第二中學(xué)中考數(shù)學(xué)四模試卷含解析_第1頁(yè)
2022年廣東省深圳市育才第二中學(xué)中考數(shù)學(xué)四模試卷含解析_第2頁(yè)
2022年廣東省深圳市育才第二中學(xué)中考數(shù)學(xué)四模試卷含解析_第3頁(yè)
免費(fèi)預(yù)覽已結(jié)束,剩余22頁(yè)可下載查看

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過(guò)第三象限,則實(shí)數(shù)b的取值范圍是()A.b≥1.25 B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤22.將直徑為60cm的圓形鐵皮,做成三個(gè)相同的圓錐容器的側(cè)面(不浪費(fèi)材料,不計(jì)接縫處的材料損耗),那么每個(gè)圓錐容器的底面半徑為()A.10cm B.30cm C.45cm D.300cm3.如圖所示的幾何體的主視圖是()A. B. C. D.4.一次函數(shù)y1=kx+1﹣2k(k≠0)的圖象記作G1,一次函數(shù)y2=2x+3(﹣1<x<2)的圖象記作G2,對(duì)于這兩個(gè)圖象,有以下幾種說(shuō)法:①當(dāng)G1與G2有公共點(diǎn)時(shí),y1隨x增大而減小;②當(dāng)G1與G2沒(méi)有公共點(diǎn)時(shí),y1隨x增大而增大;③當(dāng)k=2時(shí),G1與G2平行,且平行線之間的距離為65下列選項(xiàng)中,描述準(zhǔn)確的是()A.①②正確,③錯(cuò)誤 B.①③正確,②錯(cuò)誤C.②③正確,①錯(cuò)誤 D.①②③都正確5.如圖,在中,D、E分別在邊AB、AC上,,交AB于F,那么下列比例式中正確的是A. B. C. D.6.關(guān)于的敘述正確的是()A.= B.在數(shù)軸上不存在表示的點(diǎn)C.=± D.與最接近的整數(shù)是37.一、單選題如圖,△ABC中,AB=4,AC=3,BC=2,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到△AED,則BE的長(zhǎng)為()A.5 B.4 C.3 D.28.如圖,⊙O的直徑AB的長(zhǎng)為10,弦AC長(zhǎng)為6,∠ACB的平分線交⊙O于D,則CD長(zhǎng)為()A.7 B. C. D.99.《九章算術(shù)》中有這樣一個(gè)問(wèn)題:“今有甲乙二人持錢不知其數(shù),甲得乙半而錢五十,乙得甲太半而錢亦五十.問(wèn)甲、乙持錢各幾何?”題意為:今有甲乙二人,不知其錢包里有多少錢,若乙把其一半的錢給甲,則甲的錢數(shù)為50;而甲把其的錢給乙,則乙的錢數(shù)也能為50,問(wèn)甲、乙各有多少錢?設(shè)甲的錢數(shù)為x,乙的錢數(shù)為y,則列方程組為()A. B.C. D.10.如圖,△ABC的內(nèi)切圓⊙O與AB,BC,CA分別相切于點(diǎn)D,E,F(xiàn),且AD=2,BC=5,則△ABC的周長(zhǎng)為()A.16 B.14 C.12 D.10二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知,,則________.12.化簡(jiǎn):=.13.如圖,點(diǎn)A的坐標(biāo)為(3,),點(diǎn)B的坐標(biāo)為(6,0),將△AOB繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)一定的角度后得到△A′O′B,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′在x軸上,則點(diǎn)O′的坐標(biāo)為_(kāi)____.14.小明用一個(gè)半徑為30cm且圓心角為240°的扇形紙片做成一個(gè)圓錐形紙帽(粘合部分忽略不計(jì)),那么這個(gè)圓錐形紙帽的底面半徑為_(kāi)____cm.15.袋中裝有6個(gè)黑球和n個(gè)白球,經(jīng)過(guò)若干次試驗(yàn),發(fā)現(xiàn)“若從袋中任摸出一個(gè)球,恰是黑球的概率為”,則這個(gè)袋中白球大約有_____個(gè).16.在△ABC中,AB=AC,∠A=36°,DE是AB的垂直平分線,DE交AB于點(diǎn)D,交AC于點(diǎn)E,連接BE.下列結(jié)論①BE平分∠ABC;②AE=BE=BC;③△BEC周長(zhǎng)等于AC+BC;④E點(diǎn)是AC的中點(diǎn).其中正確的結(jié)論有_____(填序號(hào))17.若2a﹣b=5,a﹣2b=4,則a﹣b的值為_(kāi)_______.三、解答題(共7小題,滿分69分)18.(10分)(問(wèn)題情境)張老師給愛(ài)好學(xué)習(xí)的小軍和小俊提出這樣的一個(gè)問(wèn)題:如圖1,在△ABC中,AB=AC,點(diǎn)P為邊BC上任一點(diǎn),過(guò)點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D,E,過(guò)點(diǎn)C作CF⊥AB,垂足為F,求證:PD+PE=CF.小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.小俊的證明思路是:如圖2,過(guò)點(diǎn)P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.[變式探究]如圖3,當(dāng)點(diǎn)P在BC延長(zhǎng)線上時(shí),其余條件不變,求證:PD﹣PE=CF;請(qǐng)運(yùn)用上述解答中所積累的經(jīng)驗(yàn)和方法完成下列兩題:[結(jié)論運(yùn)用]如圖4,將矩形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過(guò)點(diǎn)P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;[遷移拓展]圖5是一個(gè)航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點(diǎn),ED⊥AD,EC⊥CB,垂足分別為D、C,且AD?CE=DE?BC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點(diǎn),連接DM、CN,求△DEM與△CEN的周長(zhǎng)之和.19.(5分)某市旅游部門統(tǒng)計(jì)了今年“五?一”放假期間該市A、B、C、D四個(gè)旅游景區(qū)的旅游人數(shù),并繪制出如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,根據(jù)圖中的信息解答下列問(wèn)題:(1)求今年“五?一”放假期間該市這四個(gè)景點(diǎn)共接待游客的總?cè)藬?shù);(2)扇形統(tǒng)計(jì)圖中景點(diǎn)A所對(duì)應(yīng)的圓心角的度數(shù)是多少,請(qǐng)直接補(bǔ)全條形統(tǒng)計(jì)圖;(3)根據(jù)預(yù)測(cè),明年“五?一”放假期間將有90萬(wàn)游客選擇到該市的這四個(gè)景點(diǎn)旅游,請(qǐng)你估計(jì)有多少人會(huì)選擇去景點(diǎn)D旅游?20.(8分)某超市預(yù)測(cè)某飲料有發(fā)展前途,用1600元購(gòu)進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購(gòu)進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2元.第一批飲料進(jìn)貨單價(jià)多少元?若二次購(gòu)進(jìn)飲料按同一價(jià)格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價(jià)至少為多少元?21.(10分)如圖,已知某水庫(kù)大壩的橫斷面是梯形ABCD,壩頂寬AD是6米,壩高14米,背水坡AB的坡度為1:3,迎水坡CD的坡度為1:1.求:(1)背水坡AB的長(zhǎng)度.(1)壩底BC的長(zhǎng)度.22.(10分)某同學(xué)報(bào)名參加學(xué)校秋季運(yùn)動(dòng)會(huì),有以下5個(gè)項(xiàng)目可供選擇:徑賽項(xiàng)目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項(xiàng)目:跳遠(yuǎn),跳高(分別用T1、T2表示).(1)該同學(xué)從5個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率P為;(2)該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),求恰好是一個(gè)徑賽項(xiàng)目和一個(gè)田賽項(xiàng)目的概率P1,利用列表法或樹(shù)狀圖加以說(shuō)明;(3)該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),則兩個(gè)項(xiàng)目都是徑賽項(xiàng)目的概率P2為.23.(12分)如圖,一枚運(yùn)載火箭從距雷達(dá)站C處5km的地面O處發(fā)射,當(dāng)火箭到達(dá)點(diǎn)A,B時(shí),在雷達(dá)站C處測(cè)得點(diǎn)A,B的仰角分別為34°,45°,其中點(diǎn)O,A,B在同一條直線上.求AC和AB的長(zhǎng)(結(jié)果保留小數(shù)點(diǎn)后一位)(參考數(shù)據(jù):sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)24.(14分)如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過(guò)點(diǎn)A、C、B的拋物線的一部分C1與經(jīng)過(guò)點(diǎn)A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,),點(diǎn)M是拋物線C2:(<0)的頂點(diǎn).(1)求A、B兩點(diǎn)的坐標(biāo);(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請(qǐng)說(shuō)明理由;(3)當(dāng)△BDM為直角三角形時(shí),求的值.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】∵二次函數(shù)y=x2-2(b-2)x+b2-1的圖象不經(jīng)過(guò)第三象限,a=1>0,∴Δ≤0或拋物線與x軸的交點(diǎn)的橫坐標(biāo)均大于等于0.當(dāng)Δ≤0時(shí),[-2(b-2)]2-4(b2-1)≤0,解得b≥.當(dāng)拋物線與x軸的交點(diǎn)的橫坐標(biāo)均大于等于0時(shí),設(shè)拋物線與x軸的交點(diǎn)的橫坐標(biāo)分別為x1,x2,則x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,無(wú)解,∴此種情況不存在.∴b≥.2、A【解析】

根據(jù)已知得出直徑是的圓形鐵皮,被分成三個(gè)圓心角為半徑是30cm的扇形,再根據(jù)扇形弧長(zhǎng)等于圓錐底面圓的周長(zhǎng)即可得出答案。【詳解】直徑是的圓形鐵皮,被分成三個(gè)圓心角為半徑是30cm的扇形假設(shè)每個(gè)圓錐容器的地面半徑為解得故答案選A.【點(diǎn)睛】本題考查扇形弧長(zhǎng)的計(jì)算方法和扇形圍成的圓錐底面圓的半徑的計(jì)算方法。3、C【解析】

主視圖就是從正面看,看列數(shù)和每一列的個(gè)數(shù).【詳解】解:由圖可知,主視圖如下故選C.【點(diǎn)睛】考核知識(shí)點(diǎn):組合體的三視圖.4、D【解析】

畫圖,找出G2的臨界點(diǎn),以及G1的臨界直線,分析出G1過(guò)定點(diǎn),根據(jù)k的正負(fù)與函數(shù)增減變化的關(guān)系,結(jié)合函數(shù)圖象逐個(gè)選項(xiàng)分析即可解答.【詳解】解:一次函數(shù)y2=2x+3(﹣1<x<2)的函數(shù)值隨x的增大而增大,如圖所示,N(﹣1,2),Q(2,7)為G2的兩個(gè)臨界點(diǎn),易知一次函數(shù)y1=kx+1﹣2k(k≠0)的圖象過(guò)定點(diǎn)M(2,1),直線MN與直線MQ為G1與G2有公共點(diǎn)的兩條臨界直線,從而當(dāng)G1與G2有公共點(diǎn)時(shí),y1隨x增大而減??;故①正確;當(dāng)G1與G2沒(méi)有公共點(diǎn)時(shí),分三種情況:一是直線MN,但此時(shí)k=0,不符合要求;二是直線MQ,但此時(shí)k不存在,與一次函數(shù)定義不符,故MQ不符合題意;三是當(dāng)k>0時(shí),此時(shí)y1隨x增大而增大,符合題意,故②正確;當(dāng)k=2時(shí),G1與G2平行正確,過(guò)點(diǎn)M作MP⊥NQ,則MN=3,由y2=2x+3,且MN∥x軸,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=35∴PM=65故③正確.綜上,故選:D.【點(diǎn)睛】本題是一次函數(shù)中兩條直線相交或平行的綜合問(wèn)題,需要數(shù)形結(jié)合,結(jié)合一次函數(shù)的性質(zhì)逐條分析解答,難度較大.5、C【解析】

根據(jù)平行線分線段成比例定理和相似三角形的性質(zhì)找準(zhǔn)線段的對(duì)應(yīng)關(guān)系,對(duì)各選項(xiàng)分析判斷.【詳解】A、∵EF∥CD,DE∥BC,∴,,∵CE≠AC,∴,故本選項(xiàng)錯(cuò)誤;B、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本選項(xiàng)錯(cuò)誤;C、∵EF∥CD,DE∥BC,∴,,∴,故本選項(xiàng)正確;D、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本選項(xiàng)錯(cuò)誤.故選C.【點(diǎn)睛】本題考查了平行線分線段成比例的運(yùn)用及平行于三角形一邊的直線截其它兩邊,所得的新三角形與原三角形相似的定理的運(yùn)用,在解答時(shí)尋找對(duì)應(yīng)線段是關(guān)健.6、D【解析】

根據(jù)二次根式的加法法則、實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的關(guān)系、二次根式的化簡(jiǎn)及無(wú)理數(shù)的估算對(duì)各項(xiàng)依次分析,即可解答.【詳解】選項(xiàng)A,+無(wú)法計(jì)算;選項(xiàng)B,在數(shù)軸上存在表示的點(diǎn);選項(xiàng)C,;選項(xiàng)D,與最接近的整數(shù)是=1.故選D.【點(diǎn)睛】本題考查了二次根式的加法法則、實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的關(guān)系、二次根式的化簡(jiǎn)及無(wú)理數(shù)的估算等知識(shí)點(diǎn),熟記這些知識(shí)點(diǎn)是解題的關(guān)鍵.7、B【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)可得AB=AE,∠BAE=60°,然后判斷出△AEB是等邊三角形,再根據(jù)等邊三角形的三條邊都相等可得BE=AB.【詳解】解:∵△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)

60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等邊三角形,∴BE=AB,∵AB=1,∴BE=1.故選B.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的判定與性質(zhì),主要利用了旋轉(zhuǎn)前后對(duì)應(yīng)邊相等以及旋轉(zhuǎn)角的定義.8、B【解析】

作DF⊥CA,交CA的延長(zhǎng)線于點(diǎn)F,作DG⊥CB于點(diǎn)G,連接DA,DB.由CD平分∠ACB,根據(jù)角平分線的性質(zhì)得出DF=DG,由HL證明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,從而求出CD=.【詳解】解:作DF⊥CA,垂足F在CA的延長(zhǎng)線上,作DG⊥CB于點(diǎn)G,連接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易證△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:設(shè)AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(這里由CFDG是正方形也可得).∴CD=.故選B.9、A【解析】

設(shè)甲的錢數(shù)為x,人數(shù)為y,根據(jù)“若乙把其一半的錢給甲,則甲的錢數(shù)為50;而甲把其的錢給乙,則乙的錢數(shù)也能為50”,即可得出關(guān)于x,y的二元一次方程組,此題得解.【詳解】解:設(shè)甲的錢數(shù)為x,乙的錢數(shù)為y,依題意,得:.故選A.【點(diǎn)睛】本題考查了由實(shí)際問(wèn)題抽象出二元一次方程組,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.10、B【解析】

根據(jù)切線長(zhǎng)定理進(jìn)行求解即可.【詳解】∵△ABC的內(nèi)切圓⊙O與AB,BC,CA分別相切于點(diǎn)D,E,F(xiàn),∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周長(zhǎng)=2+2+5+5=14,故選B.【點(diǎn)睛】本題考查了三角形的內(nèi)切圓以及切線長(zhǎng)定理,熟練掌握切線長(zhǎng)定理是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、65°【解析】

根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)求出∠3,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式計(jì)算即可得解.【詳解】∵m∥n,∠1=105°,∴∠3=180°?∠1=180°?105°=75°∴∠α=∠2?∠3=140°?75°=65°故答案為:65°.【點(diǎn)睛】此題考查平行線的性質(zhì),解題關(guān)鍵在于利用同旁內(nèi)角互補(bǔ)求出∠3.12、2【解析】

根據(jù)算術(shù)平方根的定義,求數(shù)a的算術(shù)平方根,也就是求一個(gè)正數(shù)x,使得x2=a,則x就是a的算術(shù)平方根,特別地,規(guī)定0的算術(shù)平方根是0.【詳解】∵22=4,∴=2.【點(diǎn)睛】本題考查求算術(shù)平方根,熟記定義是關(guān)鍵.13、(,)【解析】

作AC⊥OB、O′D⊥A′B,由點(diǎn)A、B坐標(biāo)得出OC=3、AC=、BC=OC=3,從而知tan∠ABC==,由旋轉(zhuǎn)性質(zhì)知BO′=BO=6,tan∠A′BO′=tan∠ABO==,設(shè)O′D=x、BD=3x,由勾股定理求得x的值,即可知BD、O′D的長(zhǎng)即可.【詳解】如圖,過(guò)點(diǎn)A作AC⊥OB于C,過(guò)點(diǎn)O′作O′D⊥A′B于D,

∵A(3,),

∴OC=3,AC=,

∵OB=6,

∴BC=OC=3,

則tan∠ABC==,

由旋轉(zhuǎn)可知,BO′=BO=6,∠A′BO′=∠ABO,

∴==,

設(shè)O′D=x,BD=3x,

由O′D2+BD2=O′B2可得(x)2+(3x)2=62,

解得:x=或x=?(舍),

則BD=3x=,O′D=x=,

∴OD=OB+BD=6+=,

∴點(diǎn)O′的坐標(biāo)為(,).【點(diǎn)睛】本題考查的是圖形的旋轉(zhuǎn),熟練掌握勾股定理和三角函數(shù)是解題的關(guān)鍵.14、20【解析】

先求出半徑為30cm且圓心角為240°的扇形紙片的弧長(zhǎng),再利用底面周長(zhǎng)=展開(kāi)圖的弧長(zhǎng)可得.【詳解】=40π.

設(shè)這個(gè)圓錐形紙帽的底面半徑為r.

根據(jù)題意,得40π=2πr,

解得r=20cm.故答案是:20.【點(diǎn)睛】解答本題的關(guān)鍵是有確定底面周長(zhǎng)=展開(kāi)圖的弧長(zhǎng)這個(gè)等量關(guān)系,然后由扇形的弧長(zhǎng)公式和圓的周長(zhǎng)公式求值.15、1【解析】試題解析:∵袋中裝有6個(gè)黑球和n個(gè)白球,

∴袋中一共有球(6+n)個(gè),

∵從中任摸一個(gè)球,恰好是黑球的概率為,

∴,

解得:n=1.

故答案為1.16、①②③【解析】試題分析:根據(jù)三角形內(nèi)角和定理求出∠ABC、∠C的度數(shù),根據(jù)線段垂直平分線的性質(zhì)得到EA=EB,根據(jù)等腰三角形的判定定理和三角形的周長(zhǎng)公式計(jì)算即可.解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵DE是AB的垂直平分線,∴EA=EB,∴∠EBA=∠A=36°,∴∠EBC=36°,∴∠EBA=∠EBC,∴BE平分∠ABC,①正確;∠BEC=∠EBA+∠A=72°,∴∠BEC=∠C,∴BE=BC,∴AE=BE=BC,②正確;△BEC周長(zhǎng)=BC+CE+BE=BC+CE+EA=AC+BC,③正確;∵BE>EC,AE=BE,∴AE>EC,∴點(diǎn)E不是AC的中點(diǎn),④錯(cuò)誤,故答案為①②③.考點(diǎn):線段垂直平分線的性質(zhì);等腰三角形的判定與性質(zhì).17、1.【解析】試題分析:把這兩個(gè)方程相加可得1a-1b=9,兩邊同時(shí)除以1可得a-b=1.考點(diǎn):整體思想.三、解答題(共7小題,滿分69分)18、小軍的證明:見(jiàn)解析;小俊的證明:見(jiàn)解析;[變式探究]見(jiàn)解析;[結(jié)論運(yùn)用]PG+PH的值為1;[遷移拓展](6+2)dm【解析】

小軍的證明:連接AP,利用面積法即可證得;小俊的證明:過(guò)點(diǎn)P作PG⊥CF,先證明四邊形PDFG為矩形,再證明△PGC≌△CEP,即可得到答案;[變式探究]小軍的證明思路:連接AP,根據(jù)S△ABC=S△ABP﹣S△ACP,即可得到答案;小俊的證明思路:過(guò)點(diǎn)C,作CG⊥DP,先證明四邊形CFDG是矩形,再證明△CGP≌△CEP即可得到答案;[結(jié)論運(yùn)用]過(guò)點(diǎn)E作EQ⊥BC,先根據(jù)矩形的性質(zhì)求出BF,根據(jù)翻折及勾股定理求出DC,證得四邊形EQCD是矩形,得出BE=BF即可得到答案;[遷移拓展]延長(zhǎng)AD,BC交于點(diǎn)F,作BH⊥AF,證明△ADE∽△BCE得到FA=FB,設(shè)DH=x,利用勾股定理求出x得到BH=6,再根據(jù)∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點(diǎn)即可得到答案.【詳解】小軍的證明:連接AP,如圖②∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP+S△ACP,∴AB×CF=AB×PD+AC×PE,∵AB=AC,∴CF=PD+PE.小俊的證明:過(guò)點(diǎn)P作PG⊥CF,如圖2,∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°,∴四邊形PDFG為矩形,∴DP=FG,∠DPG=90°,∴∠CGP=90°,∵PE⊥AC,∴∠CEP=90°,∴∠PGC=∠CEP,∵∠BDP=∠DPG=90°,∴PG∥AB,∴∠GPC=∠B,∵AB=AC,∴∠B=∠ACB,∴∠GPC=∠ECP,在△PGC和△CEP中,∴△PGC≌△CEP,∴CG=PE,∴CF=CG+FG=PE+PD;[變式探究]小軍的證明思路:連接AP,如圖③,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP﹣S△ACP,∴AB×CF=AB×PD﹣AC×PE,∵AB=AC,∴CF=PD﹣PE;小俊的證明思路:過(guò)點(diǎn)C,作CG⊥DP,如圖③,∵PD⊥AB,CF⊥AB,CG⊥DP,∴∠CFD=∠FDG=∠DGC=90°,∴CF=GD,∠DGC=90°,四邊形CFDG是矩形,∵PE⊥AC,∴∠CEP=90°,∴∠CGP=∠CEP,∵CG⊥DP,AB⊥DP,∴∠CGP=∠BDP=90°,∴CG∥AB,∴∠GCP=∠B,∵AB=AC,∴∠B=∠ACB,∵∠ACB=∠PCE,∴∠GCP=∠ECP,在△CGP和△CEP中,,∴△CGP≌△CEP,∴PG=PE,∴CF=DG=DP﹣PG=DP﹣PE.[結(jié)論運(yùn)用]如圖④過(guò)點(diǎn)E作EQ⊥BC,∵四邊形ABCD是矩形,∴AD=BC,∠C=∠ADC=90°,∵AD=8,CF=3,∴BF=BC﹣CF=AD﹣CF=5,由折疊得DF=BF,∠BEF=∠DEF,∴DF=5,∵∠C=90°,∴DC==1,∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC,∴四邊形EQCD是矩形,∴EQ=DC=1,∵AD∥BC,∴∠DEF=∠EFB,∵∠BEF=∠DEF,∴∠BEF=∠EFB,∴BE=BF,由問(wèn)題情景中的結(jié)論可得:PG+PH=EQ,∴PG+PH=1.∴PG+PH的值為1.[遷移拓展]延長(zhǎng)AD,BC交于點(diǎn)F,作BH⊥AF,如圖⑤,∵AD×CE=DE×BC,∴,∵ED⊥AD,EC⊥CB,∴∠ADE=∠BCE=90°,∴△ADE∽△BCE,∴∠A=∠CBE,∴FA=FB,由問(wèn)題情景中的結(jié)論可得:ED+EC=BH,設(shè)DH=x,∴AH=AD+DH=3+x,∵BH⊥AF,∴∠BHA=90°,∴BH2=BD2﹣DH2=AB2﹣AH2,∵AB=2,AD=3,BD=,∴()2﹣x2=(2)2﹣(3+x)2,∴x=1,∴BH2=BD2﹣DH2=37﹣1=36,∴BH=6,∴ED+EC=6,∵∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點(diǎn),∴DM=EM=AE,CN=EN=BE,∴△DEM與△CEN的周長(zhǎng)之和=DE+DM+EM+CN+EN+EC=DE+AE+BE+EC=DE+AB+EC=DE+EC+AB=6+2,∴△DEM與△CEN的周長(zhǎng)之和(6+2)dm.【點(diǎn)睛】此題是一道綜合題,考查三角形全等的判定及性質(zhì),勾股定理,矩形的性質(zhì)定理,三角形的相似的判定及性質(zhì)定理,翻折的性質(zhì),根據(jù)題中小軍和小俊的思路進(jìn)行證明,故正確理解題意由此進(jìn)行后面的證明是解題的關(guān)鍵.19、(1)60人;(2)144°,補(bǔ)全圖形見(jiàn)解析;(3)15萬(wàn)人.【解析】

(1)用B景點(diǎn)人數(shù)除以其所占百分比可得;(2)用360°乘以A景點(diǎn)人數(shù)所占比例即可,根據(jù)各景點(diǎn)人數(shù)之和等于總?cè)藬?shù)求得C的人數(shù)即可補(bǔ)全條形圖;(3)用總?cè)藬?shù)乘以樣本中D景點(diǎn)人數(shù)所占比例【詳解】(1)今年“五?一”放假期間該市這四個(gè)景點(diǎn)共接待游客的總?cè)藬?shù)為18÷30%=60萬(wàn)人;(2)扇形統(tǒng)計(jì)圖中景點(diǎn)A所對(duì)應(yīng)的圓心角的度數(shù)是360°×=144°,C景點(diǎn)人數(shù)為60﹣(24+18+10)=8萬(wàn)人,補(bǔ)全圖形如下:(3)估計(jì)選擇去景點(diǎn)D旅游的人數(shù)為90×=15(萬(wàn)人).【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大?。?0、(1)第一批飲料進(jìn)貨單價(jià)為8元.(2)銷售單價(jià)至少為11元.【解析】【分析】(1)設(shè)第一批飲料進(jìn)貨單價(jià)為元,根據(jù)等量關(guān)系第二批飲料的數(shù)量是第一批的3倍,列方程進(jìn)行求解即可;(2)設(shè)銷售單價(jià)為元,根據(jù)兩批全部售完后,獲利不少于1200元,列不等式進(jìn)行求解即可得.【詳解】(1)設(shè)第一批飲料進(jìn)貨單價(jià)為元,則:解得:經(jīng)檢驗(yàn):是分式方程的解答:第一批飲料進(jìn)貨單價(jià)為8元.(2)設(shè)銷售單價(jià)為元,則:,化簡(jiǎn)得:,解得:,答:銷售單價(jià)至少為11元.【點(diǎn)睛】本題考查了分式方程的應(yīng)用,一元一次不等式的應(yīng)用,弄清題意,找出等量關(guān)系與不等關(guān)系是關(guān)鍵.21、(1)背水坡的長(zhǎng)度為米;(1)壩底的長(zhǎng)度為116米.【解析】

(1)分別過(guò)點(diǎn)、作,垂足分別為點(diǎn)、,結(jié)合題意求得AM,MN,在中,得BM,再利用勾股定理即可.(1)在中,求得CN即可得到BC.【詳解】(1)分別過(guò)點(diǎn)、作,垂足分別為點(diǎn)、,根據(jù)題意,可知(米),(米)在中∵,∴(米),∵,∴(米).答:背水坡的長(zhǎng)度為米.(1)在中,,∴(米),∴(米)答:壩底的長(zhǎng)度為116米.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是解直角三角形的應(yīng)用-坡度坡角問(wèn)題,解題的關(guān)鍵是熟練的掌握解直角三角形的應(yīng)用-坡度坡角問(wèn)題.22、(1);(1);(3);【解析】

(1)直接根據(jù)概率公式求解;(1)先畫樹(shù)狀圖展示所有10種等可能的結(jié)果數(shù),再找出一個(gè)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論