版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Chat6z-tranformDefinitionz-TransformsRegionofConvergencez-TransformsTheinversez-Transformsz-TransformsPropertiesTheTransferFunctionChat6z-tranformDefinition6.1DefinitionandPropertiesTheDTFTprovidesafrequency-domainrepresentationofdiscrete-timesignalsandLTIdiscrete-timesystems.Becauseoftheconvergencecondition,inmanycase,theDTFTofasequencemaynotexist.Asaresult,itisnotpossibletomakeuseofsuchfrequency-domaincharacterizationinthesecase.6.1DefinitionandProperties6.1DefinitionandProperties(p227)
z-TransformmayexistformanysequenceforwhichtheDTFTdoesnotexist.Moreover,useofz-Transformtechniquespermitssimplealgebraicmanipulation.Consequently,z-Transformhasbecomeanimportanttoolintheanalysisanddesignofdigitalfilters.1.
Definition6.1DefinitionandProperties6.1DefinitionandProperties(p227)RezjImzz=rejr11jjUnitcircle06.1DefinitionandPropertiesForagivensequence,thesetRofvaluesofzforwhichitsz-transformconvergesiscalledthe
regionofconvergence(ROC).6.1DefinitionandProperties(p227)Theinterpretationofthez-transformG(z)astheDTFTofsequenceg[n]r-n.Wecanchoosethevalueofrproperlyeventhoughg[n]isnotabsolutelysummable.Ingeneral,ROCcanberepresentedasForagivensequence,thes6.1DefinitionandProperties(p227)Note:Thez-transformofthetwosequenceareidenticaleventhoughthetwoparentsequencearedifferent.
Onlywayauniquesequencecanbeassociatedwithaz-transformisbyspecifyingitsROC.
TheDTFTG(ejω)ofasequenceg[n]convergesuniformlyifandonlyiftheROCofthez-transformG(z)ofg[n]includestheunitcircle.
6.1DefinitionandProperties6.1DefinitionandProperties(p227)Table6.16.1DefinitionandProperties6.2Rationalz-Transforms(p231)M-----thedegreeofthenumeratorpolynomialP(z)N-----thedegreeofthedenominatorpolynomialD(z)6.2Rationalz-Transforms(p26.2Rationalz-Transforms(p231)InEq.(6.15),thereareMfinitezerosandNfinitepolesIfN>M,thereareadditionalN-Mzerosatz=0.IfN<M,thereareadditionalM-Npolesatz=0.6.2Rationalz-Transforms(p236.3ROCofRationalz-TransformsTheROCofarationalz-transformisboundedbythelocationofitspoles.TheROCofarationalz-Transformcannotcontainanypoles
Asequencecanbeoneofthefollowingtype:finite-length,right-sided,left-sidedandtwo-sided.Iftherationalz-transformhasNpoleswithRdistinctmagnitudes,thenithasR+1ROCs,R+1distinctsequencehavingthesamerationalz-transform.6.3ROCofRationalz-Transfoa)TheROCofthez-transformofafinite-lengthsequencedefinedforM≤n≤Nistheentirez-planeexceptpossiblyz=0and/orz=+∞6.3ROCofRationalz-TransformsWehavethefollowingobservationwithregardtotheROCofaRationalz-Transforma)TheROCofthez-transform6.3
ROCofRationalz-Transformsb)TheROCofthez-transformofaright-sidedsequencedefinedforM≤n≤∞istheexteriortoacircleinthez-planepassingthroughthepolefurthestfromtheoriginz=0.6.3ROCofRationalz-Transfor6.3ROCofRationalz-Transformsc)TheROCofthez-transformofaleft-sidedsequencedefinedfor-∞≤n≤Nistheinteriortoacircleinthez-planepassingthroughthepolenearestfromtheoriginz=0.6.3ROCofRationalz-Transfor6.3ROCofRationalz-Transformsd)TheROCofthez-transformofatwo-sidedsequenceofinfinitelengthisaringboundedbytwocircleinthez-planepassingthroughtwopoleswithnopolesinsidethering.6.3ROCofRationalz-Transfor6.4TheInversez-Transform(p238)6.4.1GeneralExpression-----Cauchy’sintegraltheorem6.4TheInversez-Transform(6.4.1GeneralExpressionIfthepoleatz=λ0ofG(z)zn-1isofmultiplicitym.6.4.1GeneralExpressionIfth6.4.3Partial-FractionExpansionMethodArationalz-transformG(z)withacausalinversetransformg[n]hasanROCthatisexterior----M≥N,P(z)/D(z)isanimproperfraction----M<N,P1(z)/D(z)isaproperfraction6.4.3Partial-FractionExpansi6.4.3Partial-FractionExpansionMethodSimplePoles6.4.3Partial-FractionExpansi6.4.3Partial-FractionExpansionMethodMultiplePolesIfthepoleatz=visofmultiplicityLandtheremainingN-Lpolesaresimple.6.4.3Partial-FractionExpansi6.5z-TransformProperties(p246)ConjugationPropertyTime-ReversalPropertyLinearityProperty6.5z-TransformProperties(p6.5z-TransformProperties(p246)MultiplicationbyanExponentialSequenceDifferentiationPropertyTime-ShiftingProperty6.5z-TransformProperties(p6.5z-TransformProperties(p246)ModulationtheoremParseval’sRelationConvolutionProperty6.5z-TransformProperties(p6.7TheTransferFunction(p258)h[n]x[n]y[n]6.7.1Definition6.7TheTransferFunction(p256.7.1Definition-----systemfunctionortransferfunction6.7.2TransferFunctionExpressionFIRDigitalFilterForacausalFIRfilter,0≤N1≤N2,theROCofH(z)istheentirez-plane,excludingthepointz=Definition-----systemfuFinite-DimensionalLTIIIRDiscrete-TimeSystem6.7.2TransferFunctionExpressionFinite-DimensionalLTIIIRDis6.7.2TransferFunctionExpression
ForacausalIIRfilter,h[n]isacausal,theROCofH(z)isexteriortothecirclegoingthroughthepolefurthestfromtheorigin.6.7.2TransferFunctionExpres6.7.3FrequencyResponsefrom
TransferFunctionIftheROCofH(z)includesthecircle6.7.3FrequencyResponsefrom6.7.3FrequencyResponsefrom
TransferFunctionMagnitudefunction6.7.3FrequencyResponsefrom6.7.3FrequencyResponsefrom
TransferFunctionPhaseresponseMagnitude-squaredfunctionforareal-coefficientrationaltransferfunction6.7.3FrequencyResponsefromAcausalLTIdigitalfilterisBIBOstableifandonlyifitsimpulseresponseh[n]isabsolutelysummable.
WenowdevelopastabilityconditionintermsofthepolelocationsofthetransferfunctionH(z)
IftheROCincludestheunitcircle|z|=1,thenthedigitalfilterisstable,andviceversa.6.7.5StabilityConditionintermsofpolelocationAcausalLTIdigitalfilteriAFIRdigitalfilterwithboundedimpulseresponseisalwaysstable.
Ontheotherhand,anIIRfiltermaybeunstableifnotdesignedproperly.
AnoriginallystableIIRfiltercharacterizedbyinfiniteprecisioncoefficientsmaybecomeunstablewhencoefficientsgetquantizedduetoimplementation6.7.5StabilityConditionintermsofpolelocationAFIRdigitalfilterwithbouExample6.38:consideracausalIIRtransferfunction.6.7.5StabilityConditionintermsofpolelocationExample6.38:consideracauTheabsolutesummabilityconditionofh[n]issatisfied.
Hence,H(z)isastabletransferfunction.6.7.5StabilityConditionintermsofpolelocationTheabsolutesummabilitycondiNow,considerthecasewhenthetransferfunctioncoefficientsareroundedtovalueswith2digitsafterthedecimalpoint:6.7.5StabilityConditionintermsofpolelocationNow,considerthecasewhenInthiscase,theimpulseresponsecoefficient increasesrapidlytoaconstantvalueasnincreases.
Hence,theabsolutesummabilityconditionofisviolated
Thus,isanunstabletransferfunction6.7.5StabilityConditionintermsofpolelocationInthiscase,theimpulseres6.7.5StabilityConditionintermsofpolelocation1)AllpolesofacausalstabletransferfunctionH(z)mustbestrictlyinsidetheunitcircle.3)TheROCoftransferfunctionofanLTIdigitalfilterincludestheunitcircle,thenthefilterisBIBOstable.2)AllpolesofaanticausalstabletransferfunctionH(z)mustbestrictlyoutsidetheunitcircle.Conclusions:6.7.5StabilityConditioninExample:
DeterminethestableorcausalofthefollowingtransferfunctionAnswer:1stableandcausal6.7.5StabilityConditionintermsofpolelocationExample:Determinethestable6.7.5StabilityConditionintermsofpolelocation1unstableandcausal1stableandanticausal6.7.5StabilityConditionin6.7.5StabilityConditionintermsofpolelocationstableandnocausal16.7.5StabilityConditioninExercises36.20(a)6.25(a)(b)6.376.40(a)6.416.43(a)(b)6.48Exercises36.20(Chat6z-tranformDefinitionz-TransformsRegionofConvergencez-TransformsTheinversez-Transformsz-TransformsPropertiesTheTransferFunctionChat6z-tranformDefinition6.1DefinitionandPropertiesTheDTFTprovidesafrequency-domainrepresentationofdiscrete-timesignalsandLTIdiscrete-timesystems.Becauseoftheconvergencecondition,inmanycase,theDTFTofasequencemaynotexist.Asaresult,itisnotpossibletomakeuseofsuchfrequency-domaincharacterizationinthesecase.6.1DefinitionandProperties6.1DefinitionandProperties(p227)
z-TransformmayexistformanysequenceforwhichtheDTFTdoesnotexist.Moreover,useofz-Transformtechniquespermitssimplealgebraicmanipulation.Consequently,z-Transformhasbecomeanimportanttoolintheanalysisanddesignofdigitalfilters.1.
Definition6.1DefinitionandProperties6.1DefinitionandProperties(p227)RezjImzz=rejr11jjUnitcircle06.1DefinitionandPropertiesForagivensequence,thesetRofvaluesofzforwhichitsz-transformconvergesiscalledthe
regionofconvergence(ROC).6.1DefinitionandProperties(p227)Theinterpretationofthez-transformG(z)astheDTFTofsequenceg[n]r-n.Wecanchoosethevalueofrproperlyeventhoughg[n]isnotabsolutelysummable.Ingeneral,ROCcanberepresentedasForagivensequence,thes6.1DefinitionandProperties(p227)Note:Thez-transformofthetwosequenceareidenticaleventhoughthetwoparentsequencearedifferent.
Onlywayauniquesequencecanbeassociatedwithaz-transformisbyspecifyingitsROC.
TheDTFTG(ejω)ofasequenceg[n]convergesuniformlyifandonlyiftheROCofthez-transformG(z)ofg[n]includestheunitcircle.
6.1DefinitionandProperties6.1DefinitionandProperties(p227)Table6.16.1DefinitionandProperties6.2Rationalz-Transforms(p231)M-----thedegreeofthenumeratorpolynomialP(z)N-----thedegreeofthedenominatorpolynomialD(z)6.2Rationalz-Transforms(p26.2Rationalz-Transforms(p231)InEq.(6.15),thereareMfinitezerosandNfinitepolesIfN>M,thereareadditionalN-Mzerosatz=0.IfN<M,thereareadditionalM-Npolesatz=0.6.2Rationalz-Transforms(p236.3ROCofRationalz-TransformsTheROCofarationalz-transformisboundedbythelocationofitspoles.TheROCofarationalz-Transformcannotcontainanypoles
Asequencecanbeoneofthefollowingtype:finite-length,right-sided,left-sidedandtwo-sided.Iftherationalz-transformhasNpoleswithRdistinctmagnitudes,thenithasR+1ROCs,R+1distinctsequencehavingthesamerationalz-transform.6.3ROCofRationalz-Transfoa)TheROCofthez-transformofafinite-lengthsequencedefinedforM≤n≤Nistheentirez-planeexceptpossiblyz=0and/orz=+∞6.3ROCofRationalz-TransformsWehavethefollowingobservationwithregardtotheROCofaRationalz-Transforma)TheROCofthez-transform6.3
ROCofRationalz-Transformsb)TheROCofthez-transformofaright-sidedsequencedefinedforM≤n≤∞istheexteriortoacircleinthez-planepassingthroughthepolefurthestfromtheoriginz=0.6.3ROCofRationalz-Transfor6.3ROCofRationalz-Transformsc)TheROCofthez-transformofaleft-sidedsequencedefinedfor-∞≤n≤Nistheinteriortoacircleinthez-planepassingthroughthepolenearestfromtheoriginz=0.6.3ROCofRationalz-Transfor6.3ROCofRationalz-Transformsd)TheROCofthez-transformofatwo-sidedsequenceofinfinitelengthisaringboundedbytwocircleinthez-planepassingthroughtwopoleswithnopolesinsidethering.6.3ROCofRationalz-Transfor6.4TheInversez-Transform(p238)6.4.1GeneralExpression-----Cauchy’sintegraltheorem6.4TheInversez-Transform(6.4.1GeneralExpressionIfthepoleatz=λ0ofG(z)zn-1isofmultiplicitym.6.4.1GeneralExpressionIfth6.4.3Partial-FractionExpansionMethodArationalz-transformG(z)withacausalinversetransformg[n]hasanROCthatisexterior----M≥N,P(z)/D(z)isanimproperfraction----M<N,P1(z)/D(z)isaproperfraction6.4.3Partial-FractionExpansi6.4.3Partial-FractionExpansionMethodSimplePoles6.4.3Partial-FractionExpansi6.4.3Partial-FractionExpansionMethodMultiplePolesIfthepoleatz=visofmultiplicityLandtheremainingN-Lpolesaresimple.6.4.3Partial-FractionExpansi6.5z-TransformProperties(p246)ConjugationPropertyTime-ReversalPropertyLinearityProperty6.5z-TransformProperties(p6.5z-TransformProperties(p246)MultiplicationbyanExponentialSequenceDifferentiationPropertyTime-ShiftingProperty6.5z-TransformProperties(p6.5z-TransformProperties(p246)ModulationtheoremParseval’sRelationConvolutionProperty6.5z-TransformProperties(p6.7TheTransferFunction(p258)h[n]x[n]y[n]6.7.1Definition6.7TheTransferFunction(p256.7.1Definition-----systemfunctionortransferfunction6.7.2TransferFunctionExpressionFIRDigitalFilterForacausalFIRfilter,0≤N1≤N2,theROCofH(z)istheentirez-plane,excludingthepointz=Definition-----systemfuFinite-DimensionalLTIIIRDiscrete-TimeSystem6.7.2TransferFunctionExpressionFinite-DimensionalLTIIIRDis6.7.2TransferFunctionExpression
ForacausalIIRfilter,h[n]isacausal,theROCofH(z)isexteriortothecirclegoingthroughthepolefurthestfromtheorigin.6.7.2TransferFunctionExpres6.7.3FrequencyResponsefrom
TransferFunctionIftheROCofH(z)includesthecircle6.7.3FrequencyResponsefrom6.7.3FrequencyResponsefrom
TransferFunctionMagnitudefunction6.7.3FrequencyResponsefrom6.7.3FrequencyResponsefrom
TransferFunctionPhaseresponseMagnitude-squaredfunctionforareal-coefficientrationaltransferfunction6.7.3FrequencyResponsefromAcausalLTIdigitalfilterisBIBOstableifandonlyifitsimpulseresponseh[n]isabsolutelysummable.
WenowdevelopastabilityconditionintermsofthepolelocationsofthetransferfunctionH(z)
IftheROCincludestheunitcircle|z|=1,thenthedigitalfilterisstable,andviceversa.6.7.5StabilityConditionintermsofpolelocationAcausalLTIdigitalfilteriAFIRdigitalfilterwithboundedimpulseresponseisalwaysstable.
Ontheotherhand,anIIRfiltermaybeunstableifnotdesignedproperly.
AnoriginallystableIIRfiltercharacterizedbyinfiniteprecisioncoefficientsmaybecomeunstablewhencoefficientsgetquantizedduetoimplementation6.7.5StabilityConditionintermsofpolelocationAFIRdigitalfilterwithbouExample6.38:consideracausalIIRtransferfunction.6.7.5Sta
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- IBM標(biāo)準(zhǔn)服務(wù)合同關(guān)鍵條款解析
- 代養(yǎng)協(xié)議書范本
- 代審車輛協(xié)議書
- 優(yōu)勢(shì)資本協(xié)議書
- 組件購(gòu)銷合同范本
- 修理糾紛協(xié)議書
- 代養(yǎng)終止協(xié)議書
- 代開票合同協(xié)議
- 2025-2030中國(guó)互聯(lián)網(wǎng)金融服務(wù)行業(yè)創(chuàng)新模式風(fēng)險(xiǎn)控制發(fā)展前景報(bào)告
- 2025-2030中國(guó)互聯(lián)網(wǎng)行業(yè)商業(yè)模式創(chuàng)新與發(fā)展趨勢(shì)深度研究報(bào)告
- 2025年山東省臨沂市輔警考試題庫(附答案)
- 慢性腎病治療課件
- 2025年成都市錦江區(qū)教育局公辦學(xué)校員額教師招聘第六批考試參考試題及答案解析
- 國(guó)開2025年人文英語4寫作形考答案
- 四川省醫(yī)療服務(wù)價(jià)格項(xiàng)目匯編(2022版)
- 2025年全面解析供銷社財(cái)務(wù)人員招聘考試要點(diǎn)及模擬題集錦
- 供應(yīng)室無菌消毒課件
- 造船行業(yè)工期保證措施
- 2024部編版七年級(jí)道德與法治上冊(cè)背記知識(shí)清單
- 環(huán)衛(wèi)除雪知識(shí)培訓(xùn)內(nèi)容課件
- 《中藥化學(xué)化學(xué)中藥學(xué)專業(yè)》課程教學(xué)大綱
評(píng)論
0/150
提交評(píng)論