版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列函數(shù)中,既是奇函數(shù),又在上是增函數(shù)的是().A. B.C. D.2.為了進一步提升駕駛人交通安全文明意識,駕考新規(guī)要求駕校學員必須到街道路口執(zhí)勤站崗,協(xié)助交警勸導交通.現(xiàn)有甲、乙等5名駕校學員按要求分配到三個不同的路口站崗,每個路口至少一人,且甲、乙在同一路口的分配方案共有()A.12種 B.24種 C.36種 D.48種3.設集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,則集合中的元素共有()A.3個 B.4個 C.5個 D.6個4.復數(shù)的虛部為()A. B. C.2 D.5.如圖,四面體中,面和面都是等腰直角三角形,,,且二面角的大小為,若四面體的頂點都在球上,則球的表面積為()A. B. C. D.6.已知曲線,動點在直線上,過點作曲線的兩條切線,切點分別為,則直線截圓所得弦長為()A. B.2 C.4 D.7.已知是虛數(shù)單位,則()A. B. C. D.8.若時,,則的取值范圍為()A. B. C. D.9.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.10.已知函數(shù),集合,,則()A. B.C. D.11.已知數(shù)列的前項和為,且,,,則的通項公式()A. B. C. D.12.給定下列四個命題:①若一個平面內的兩條直線與另一個平面都平行,則這兩個平面相互平行;②若一個平面經(jīng)過另一個平面的垂線,則這兩個平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個平面垂直,那么一個平面內與它們的交線不垂直的直線與另一個平面也不垂直.其中,為真命題的是()A.①和②B.②和③C.③和④D.②和④二、填空題:本題共4小題,每小題5分,共20分。13.為了抗擊新型冠狀病毒肺炎,某醫(yī)藥公司研究出一種消毒劑,據(jù)實驗表明,該藥物釋放量與時間的函數(shù)關系為(如圖所示),實驗表明,當藥物釋放量對人體無害.(1)______;(2)為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經(jīng)過______分鐘人方可進入房間.14.已知曲線,點,在曲線上,且以為直徑的圓的方程是.則_______.15.在編號為1,2,3,4,5且大小和形狀均相同的五張卡片中,一次隨機抽取其中的三張,則抽取的三張卡片編號之和是偶數(shù)的概率為________.16.如圖,是圓的直徑,弦的延長線相交于點垂直的延長線于點.求證:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知為等差數(shù)列,為等比數(shù)列,的前n項和為,滿足,,,.(1)求數(shù)列和的通項公式;(2)令,數(shù)列的前n項和,求.18.(12分)金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學生.新生接待其實也是和社會溝通的一個平臺.校團委、學生會從在校學生中隨機抽取了160名學生,對是否愿意投入到新生接待工作進行了問卷調查,統(tǒng)計數(shù)據(jù)如下:愿意不愿意男生6020女士4040(1)根據(jù)上表說明,能否有99%把握認為愿意參加新生接待工作與性別有關;(2)現(xiàn)從參與問卷調查且愿意參加新生接待工作的學生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機選取3人到火車站迎接新生,設選取的3人中女生人數(shù)為,寫出的分布列,并求.附:,其中.0.050.010.0013.8416.63510.82819.(12分)如圖所示,在四棱錐中,底面為正方形,,,,,為的中點,為棱上的一點.(1)證明:面面;(2)當為中點時,求二面角余弦值.20.(12分)已知函數(shù),其中e為自然對數(shù)的底數(shù).(1)討論函數(shù)的單調性;(2)用表示中較大者,記函數(shù).若函數(shù)在上恰有2個零點,求實數(shù)a的取值范圍.21.(12分)設函數(shù)其中(Ⅰ)若曲線在點處切線的傾斜角為,求的值;(Ⅱ)已知導函數(shù)在區(qū)間上存在零點,證明:當時,.22.(10分)已知不等式的解集為.(1)求實數(shù)的值;(2)已知存在實數(shù)使得恒成立,求實數(shù)的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
奇函數(shù)滿足定義域關于原點對稱且,在上即可.【詳解】A:因為定義域為,所以不可能時奇函數(shù),錯誤;B:定義域關于原點對稱,且滿足奇函數(shù),又,所以在上,正確;C:定義域關于原點對稱,且滿足奇函數(shù),,在上,因為,所以在上不是增函數(shù),錯誤;D:定義域關于原點對稱,且,滿足奇函數(shù),在上很明顯存在變號零點,所以在上不是增函數(shù),錯誤;故選:B【點睛】此題考查判斷函數(shù)奇偶性和單調性,注意奇偶性的前提定義域關于原點對稱,屬于簡單題目.2、C【解析】
先將甲、乙兩人看作一個整體,當作一個元素,再將這四個元素分成3個部分,每一個部分至少一個,再將這3部分分配到3個不同的路口,根據(jù)分步計數(shù)原理可得選項.【詳解】把甲、乙兩名交警看作一個整體,個人變成了4個元素,再把這4個元素分成3部分,每部分至少有1個人,共有種方法,再把這3部分分到3個不同的路口,有種方法,由分步計數(shù)原理,共有種方案。故選:C.【點睛】本題主要考查排列與組合,常常運用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問題,屬于中檔題.3、A【解析】試題分析:,,所以,即集合中共有3個元素,故選A.考點:集合的運算.4、D【解析】
根據(jù)復數(shù)的除法運算,化簡出,即可得出虛部.【詳解】解:=,故虛部為-2.故選:D.【點睛】本題考查復數(shù)的除法運算和復數(shù)的概念.5、B【解析】
分別取、的中點、,連接、、,利用二面角的定義轉化二面角的平面角為,然后分別過點作平面的垂線與過點作平面的垂線交于點,在中計算出,再利用勾股定理計算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案.【詳解】如下圖所示,分別取、的中點、,連接、、,由于是以為直角等腰直角三角形,為的中點,,,且、分別為、的中點,所以,,所以,,所以二面角的平面角為,,則,且,所以,,,是以為直角的等腰直角三角形,所以,的外心為點,同理可知,的外心為點,分別過點作平面的垂線與過點作平面的垂線交于點,則點在平面內,如下圖所示,由圖形可知,,在中,,,所以,,所以,球的半徑為,因此,球的表面積為.故選:B.【點睛】本題考查球體的表面積,考查二面角的定義,解決本題的關鍵在于找出球心的位置,同時考查了計算能力,屬于中等題.6、C【解析】
設,根據(jù)導數(shù)的幾何意義,求出切線斜率,進而得到切線方程,將點坐標代入切線方程,抽象出直線方程,且過定點為已知圓的圓心,即可求解.【詳解】圓可化為.設,則的斜率分別為,所以的方程為,即,,即,由于都過點,所以,即都在直線上,所以直線的方程為,恒過定點,即直線過圓心,則直線截圓所得弦長為4.故選:C.【點睛】本題考查直線與圓位置關系、直線與拋物線位置關系,拋物線兩切點所在直線求解是解題的關鍵,屬于中檔題.7、B【解析】
根據(jù)復數(shù)的乘法運算法則,直接計算,即可得出結果.【詳解】.故選B【點睛】本題主要考查復數(shù)的乘法,熟記運算法則即可,屬于基礎題型.8、D【解析】
由題得對恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對恒成立,令,在單調遞減,且,在上單調遞增,在上單調遞減,,又在單調遞增,,的取值范圍為.故選:D【點睛】本題主要考查了不等式恒成立問題,導數(shù)的綜合應用,考查了轉化與化歸的思想.求解不等式恒成立問題,可采用參變量分離法去求解.9、C【解析】
利用圓心到漸近線的距離等于半徑即可建立間的關系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【點睛】本題考查雙曲線離心率的求法,求雙曲線離心率問題,關鍵是建立三者間的方程或不等關系,本題是一道基礎題.10、C【解析】
分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,∴.故選C.【點睛】本題主要考查了集合的基本運算,難度容易.11、C【解析】
利用證得數(shù)列為常數(shù)列,并由此求得的通項公式.【詳解】由,得,可得().相減得,則(),又由,,得,所以,所以為常數(shù)列,所以,故.故選:C【點睛】本小題考查數(shù)列的通項與前項和的關系等基礎知識;考查運算求解能力,邏輯推理能力,應用意識.12、D【解析】
利用線面平行和垂直,面面平行和垂直的性質和判定定理對四個命題分別分析進行選擇.【詳解】當兩個平面相交時,一個平面內的兩條直線也可以平行于另一個平面,故①錯誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯誤;若兩個平面垂直,只有在一個平面內與它們的交線垂直的直線才與另一個平面垂直,故④正確.綜上,真命題是②④.故選:D【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,考查空間想象能力,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、240【解析】
(1)由時,,即可得出的值;(2)解不等式組,即可得出答案.【詳解】(1)由圖可知,當時,,即(2)由題意可得,解得則為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經(jīng)過分鐘人方可進入房間.故答案為:(1)2;(2)40【點睛】本題主要考查了分段函數(shù)的應用,屬于中檔題.14、【解析】
設所在直線方程為設?點坐標分別為,,都在上,代入曲線方程,兩式作差可得,從而可得直線的斜率,聯(lián)立直線與的方程,由,利用弦長公式即可求解.【詳解】因為是圓的直徑,必過圓心點,設所在直線方程為設?點坐標分別為,,都在上,故兩式相減,可得(因為是的中點),即聯(lián)立直線與的方程:又,即,即又因為,則有即∴.故答案為:【點睛】本題考查了直線與圓錐曲線的位置關系、弦長公式,考查了學生的計算能力,綜合性比較強,屬于中檔題.15、【解析】
先求出所有的基本事件個數(shù),再求出“抽取的三張卡片編號之和是偶數(shù)”這一事件包含的基本事件個數(shù),利用古典概型的概率計算公式即可算出結果.【詳解】一次隨機抽取其中的三張,所有基本事件為:1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5;共有10個,其中“抽取的三張卡片編號之和是偶數(shù)”包含6個基本事件,因此“抽取的三張卡片編號之和是偶數(shù)”的概率為:.故答案為:.【點睛】本題考查了古典概型及其概率計算公式,屬于基礎題.16、證明見解析.【解析】試題分析:四點共圓,所以,又△∽△,所以,即,得證.試題解析:A.連接,因為為圓的直徑,所以,又,則四點共圓,所以.又△∽△,所以,即,∴.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】
(1)設的公差為,的公比為,由基本量法列式求出后可得通項公式;(2)奇數(shù)項分一組用裂項相消法求和,偶數(shù)項分一組用等比數(shù)列求和公式求和.【詳解】(1)設的公差為,的公比為,由,.得:,解得,∴,;(2)由,得,為奇數(shù)時,,為偶數(shù)時,,∴.【點睛】本題考查求等差數(shù)列和等比數(shù)列的通項公式,考查分組求和法及裂項相消法、等差數(shù)列與等比數(shù)列的前項和公式,求通項公式采取的是基本量法,即求出公差、公比,由通項公式前項和公式得出相應結論.數(shù)列求和問題,對不是等差數(shù)列或等比數(shù)列的數(shù)列求和,需掌握一些特殊方法:錯位相減法,裂項相消法,分組(并項)求和法,倒序相加法等等.18、(1)有99%把握認為愿意參加新生接待工作與性別有關;(2)詳見解析.【解析】
(1)計算得到,由此可得結論;(2)根據(jù)分層抽樣原則可得男生和女生人數(shù),由超幾何分布概率公式可求得的所有可能取值所對應的概率,由此得到分布列;根據(jù)數(shù)學期望計算公式計算可得期望.【詳解】(1)∵的觀測值,有的把握認為愿意參加新生接待工作與性別有關.(2)根據(jù)分層抽樣方法得:男生有人,女生有人,選取的人中,男生有人,女生有人.則的可能取值有,,,,,的分布列為:.【點睛】本題考查獨立性檢驗、分層抽樣、超幾何分布的分布列和數(shù)學期望的求解;關鍵是能夠明確隨機變量服從于超幾何分布,進而利用超幾何分布概率公式求得隨機變量每個取值所對應的概率.19、(1)證明見解析;(2).【解析】
(1)要證明面面,只需證明面即可;(2)以為坐標原點,以,,分別為,,軸建系,分別計算出面法向量,面的法向量,再利用公式計算即可.【詳解】證明:(1)因為底面為正方形,所以又因為,,滿足,所以又,面,面,,所以面.又因為面,所以,面面.(2)由(1)知,,兩兩垂直,以為坐標原點,以,,分別為,,軸建系如圖所示,則,,,,則,.所以,,,,設面法向量為,則由得,令得,,即;同理,設面的法向量為,則由得,令得,,即,所以,設二面角的大小為,則所以二面角余弦值為.【點睛】本題考查面面垂直的證明以及利用向量法求二面角,考查學生的運算求解能力,此類問題關鍵是準確寫出點的坐標,是一道中檔題.20、(1)函數(shù)的單調遞增區(qū)間為和,單調遞減區(qū)間為;(2).【解析】
(1)由題可得,結合的范圍判斷的正負,即可求解;(2)結合導數(shù)及函數(shù)的零點的判定定理,分類討論進行求解【詳解】(1),①當時,,∴函數(shù)在內單調遞增;②當時,令,解得或,當或時,,則單調遞增,當時,,則單調遞減,∴函數(shù)的單調遞增區(qū)間為和,單調遞減區(qū)間為(2)(Ⅰ)當時,所以在上無零點;(Ⅱ)當時,,①若,即,則是的一個零點;②若,即,則不是的零點(Ⅲ)當時,,所以此時只需考慮函數(shù)在上零點的情
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理工作者崗位考題詳解
- 球囊擴張式與機械瓣膜的選擇策略
- 律師職業(yè)資格認證考試面試指南
- 人力資源專員面試全攻略及答案解析
- 深度解析(2026)《GBT 19162-2011梭魚》
- 游戲公司行政崗位面試題與答案
- 預算分析師面試題集
- 年產(chǎn)xxx保健養(yǎng)生設備項目可行性分析報告
- 節(jié)能環(huán)保設備管理員筆試題目及精講答案
- 德制螺母項目可行性分析報告范文(總投資5000萬元)
- 臨床麻醉的經(jīng)驗與教訓化險為夷的80個病例
- 口腔正畸學課件
- 血常規(guī)報告單模板
- 物聯(lián)網(wǎng)就在身邊初識物聯(lián)網(wǎng)課件
- 路基拼接技術施工方案
- 宏觀經(jīng)濟學PPT完整全套教學課件
- 陜09J02 屋面標準圖集
- 2023年上海清算登記托管結算試題試題
- 動車組受電弓故障分析及改進探討
- GB/T 41932-2022塑料斷裂韌性(GIC和KIC)的測定線彈性斷裂力學(LEFM)法
- 2023年浙江省大學生物理競賽試卷
評論
0/150
提交評論