下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2010MCM特等ProblemA:TheSweetExplainthe“sweetspot”onabaseballbat.Everyhitterknowsthatthereisaspotonthefatpartofabaseballbatwhere umpoweristransferredtotheballwhenhit.Whyisn’tthisspotatofthebat?Asimpleexplanationbasedontorquemightseemtoidentifyofthebatasthesweetspot,butthisisknowntobeempiricallyincorrect.Developamodelthathelpsexplainthisempiricalfinding.Someplayersbelievethat“corking”abat(hollowingoutacylinderintheheadofthebatandfillingitwithcorkorrubber,thenreplacingawoodcap)enhancesthe“sweetspot”effect.Augmentyourmodeltoconfirmordenythiseffect.DoesthisexplainwhyMajorLeagueBaseballprohibitsDoesthematerialoutofwhichthebatisconstructedmatter?Thatis,doesthismodelpredictdifferentbehaviorforwood(usuallyash)ormetal(usuallyaluminum)bats?IsthiswhyMajorLeagueBaseballprohibitsmetalbats?PeterDiaoMouPrinceton,NJWedeterminethesweetspotonabaseballbat.Wecapturetheessentialphysicalsoftheball-batimpactbytakingtheballtobealossyspringandthebattobeanEuler-Bernoullibeam.Toimpartsomeintuitionaboutthemodel,webeginbypresentingarigid-bodymodel.Next,weuseourfullmodeltoreconcilevariouscorrectandincorrectclaimsthesweetspotfoundintheliterature. Finally,wediscussthesweetspotandtheperformancesofcorkedandaluminumbats,withaparticularemphasisonhoopmodes.確定了棒球棒的最佳擊球點。把棒球視作彈性體,把棒視為歐拉—伯努利梁,從而抓住了棒—球作用過程的物理本質(zhì)。為了把對該問題的直觀判斷引入模型當中,用一個剛體模型作為初始模型。然后,提出了的波模型,并對一些文獻中正確的和不正確的判斷做了整合。最后,并對塞有軟木的棒球棒和鋁質(zhì)棒球棒的最佳擊球點進行了。Althoughahittermightexpectamodelofthebat-baseballcollisiontoyieldinsightintohowthebatbreaks,howthebatimpartsspinontheball,howbesttoswingthebat,andsoon,wemodelonlythesweetspot.轉(zhuǎn),樣最好揮動等等,僅對最擊球點行建。Thereareatleasttwonotionsofwherethesweetspotshouldbe—animpactlocationonthebatthateither(對最佳擊球點至少有兩種定義) forttothehands (對手部的痛感最小izestheoutgoingvelocityoftheball(球速最大Wefocusexclusivelyontheseconddefinition.(只專注于第二個定義Thevelocityoftheballleavingthebatisdeterminedby(決定球速的因素theinitialvelocityandrotationoftheball(球的初速度和角速度theinitialvelocityandrotationofthebat(棒的初速度和角速度therelativepositionandorientationofthebatandball,and(棒的相對位置和方向theforceovertimethatthehitter’shandsapplyonthehandle.(手作用于握柄的時間)Weassumethattheballisnotrotatingandthatitsvelocityatimpactisperpendiculartothelengthofthebat.Weassumethateverythingoccursinasingleplaneandwearguethehands’interactionisnegligible.Intheframeofreferenceofthecenterofmassofthebat,theinitialconditionsarecompleyspecifiedbytheangularvelocityofthebat(棒的角速度thevelocityoftheballand(球的速度thepositionoftheimpactalongthebat(作用點的位置決定Thelocationofthesweetspotdependsnotonjustthebatalonebutalsoonthepitchandontheswing.最佳擊球點的位置不僅取決于棒,還取決于揮動軸和揮動的力Thesimplestmodelforthephysicsinvolvedhasthesweetspotatthecenterofpercussion[Brody1986],theimpactlocationthatminimizes forttothehand.Themodelassumesthebat1tobearigidbodyforwhichthereareconjugatepoints:Animpactatonewillexactlybalancetheangularrecoilandlinearrecoilattheother.Bygripatoneandimpactingattheother(thecenterofpercussion),thehandsexperienceminimalshockandtheballexitwithhighvelocity.Thecenterofpercussiondependsheavilyonthemomentofinertiaandthelocationofthe1hands.Wecannotacceptthismodelbecauseitbotherroneouslyequatesthetwodefinitionsofsweetspotandfurthermoreassumesincorrectlythatthebatisarigidbody.一種最簡單的模型將撞心視為最佳擊球點[Brody1986],球擊打該處時對手產(chǎn)生的痛感最小。這個模型把棒球棒假設為剛體,棒上存在一對點:在撞心處的擊打力會平衡握柄端的后坐力。握住一端擊打撞心會使得手的痛感最小而棒球以高速飛離棒球棒。撞心的位置主要取決于轉(zhuǎn)動慣量和手的位置。由于該模型不僅錯誤地Anothermodelpredictsthesweetspottobebetweennodesofthetwolowestnaturalfrequenciesofthebat[Nathan2000].Givenafreebatallowedtooscillate,itsoscillationscanbe posedintofundamentalmodesofvariousfrequencies.Differentgeometriesandmaterialshavedifferentnaturalfrequenciesofoscillation.Theresultingwaveshssuggesthowtoexcitethosemodes(e.g.pluckingastringatthenodeofavibrationmodewillnotexcitethatmode).Itisambiguouswhichdefinitionofsweetspotthismodeluses.Usingthedefinition,itwouldfocusonthe fortableexcitationsofvibrationalmodes:Choosingtheimpactlocationtobenearnodesofimportantfrequencies,aminimumof fortablevibrationswillresult.Usingtheseconddefinition,theworryisthatenergysentintovibrationsofthebatwillbelost.Thismodelassumesthatthemostimportantenergiestomodelarethoselosttovibration.另一種模型認為最佳擊球點位于棒的前兩階固有頻率的節(jié)點之間[Nathan2000]。給定一個振動的球棒,它的振動可以分解為許多固有頻率不同的基準模態(tài)。不同的幾何Thismodelraisesmanyquestions.Whichfrequenciesgetexcitedandwhy?TheFouriertransformofanimpulseingeneralcontainsinfiniymanymodes.Furthermore,woodisaviscoelasticmaterialthatquicklydissipatesi ergy.Isthenotionofanoscillatingbatevenrelevanttomodelingabat?Howvalidistheconditionthatthebatisfree?Oughtthesystemtobecoupledwithhandsonthehandle,orthearm’sbonestructure,orpossiblyeventheball?Whattypesofoscillationsarerelevant?Acylindricalstructurecansupportnumerousdifferenttypesofmodesbeyondthetransversemodesusuallyassumedbythismodel[Graff1975].棒是的這個條件有多強?應不應該考慮握柄端對棒的作用,手的骨骼結(jié)構(gòu),還有很多種振動模態(tài)[Gaff17]。Followingthecenter-of-percussionlineofreasoning,howdowemodeltherecoilofthebat?Followingthevibration-nodeslineofreasoning,howdowemodelthevibrationsofthebat?Interaltheoryofimpactmechanics[Goldsmith1960],thesetwoeffectsarethemainones(assumingthatthebatdoesnotbreakordeformpermanently).Brody[1986]ignoresvibrations,Cross[1999]ignoresbatrotationbutstudiesthepropagationoftheimpulsecoupledwithball,andNathan[2000]emphasizesvibrationmodes.Ourapproachreconcilesthetensionamongtheseapproacheswhileemphasizingthecrucialroleplayedbythetime-scaleofthecollision.從前面對撞心的分析,該如何對棒的反應進行建模?從對振動模態(tài)的分析來看,種效應起主導作用(假設棒不會斷裂也不會發(fā)生變形Brody[1986]忽略了振動,Cross[1999]忽略了棒的轉(zhuǎn)動,轉(zhuǎn)而研究在與球的耦合作用下沖擊在棒中的,Nathan[2000]則專注于振動模態(tài)的研究。的方法在綜合這三種方法的同時,還主Ourmaingoalistounderstandthesweetspot.Asecondarygoalistounderstanddifferencesbetweenthesweetspotsofdifferentbattypes.Althoughmarketersofoftenemphasizethesweetspots,thereareotherrelevantfactors:easeofswing,tendencyofthebattobreak,psychologicaleffects,andsoon.Wewillarguethatitdoesn’tmattertothecollisionwhetherthebatter’shandsaregripthehandlefirmlyorifthebatterfollowsthroughontheswing;thesecircumstanceshavenobearingonthetechniquerequiredtoswingthebatorhowthebat’spropertiesaffectit.的首要目標就是理解最佳擊球點的含義。次要目標就是理解不同類型的棒球棒的最佳擊球點的區(qū)別。盡管棒球棒廠商專注于最佳擊球點,但是其他因素比如揮舞的輕松程度,棒是否容易斷裂,棒球手的心理因素等等也有關(guān)系。會證明棒球手是否Ourprisanizedasfollows. ,resenttheBrodyrigid-bodymodel,illuminatingtherecoileffectsofimpact.NextresentafullcomputationalmodelbasedonwavepropagationinanEuler-Bernoullibeamcoupledwiththeballmodeledasalossyspring.Wecomparethismodelwithothersandexplorethelocalnatureofimpact,theinteractionofrecoilandvibrations,androbustnesstoparameterchanges.Weadjusttheparametersofthemodeltocommentonthesweetspotsofcorkedbatsandaluminumbats.Finally,weinvestigatetheeffectofhoopfrequenciesonaluminumbat.了Brdy然后建立了一個純計算模型,型以歐拉—伯努利梁理論為基礎,當作彈性體并考慮了與球的耦合作用。此模型與其他模型做了比較,并研撞擊的本質(zhì),反沖與振動之間的相互作用驗證了參數(shù)的魯棒性。通過改數(shù)對塞的hoop(這個“模態(tài)”不好翻譯)AsimpleWebeginbyconsideringonlytherigidrecoileffectsofthebat—ballcollision,muchasinBrody[1986].Forsimplicity,weassumethatthebatisperfectlyrigid.Becausethecollisionhappensonsuchashorttime-scale(around1ms),wetreatthebatasafreebody.Thatistosay,we’renotconcernedwiththebatter’shandsexertingforceonthebatthatmaybetransferredtotheball.棒是剛體。由于撞擊過程的持續(xù)時間很短(大約1毫秒,進一步把棒視為剛體。也就是說,不關(guān)心棒球手會對球產(chǎn)生力的作用。ThebathasmassMandmomentofinertiaIaboutitscenterofmass.Fromreferenceframeofthecenterofmassofthebatjustbeforethecollision,theballhasinitialvelocityviinthepositivex-directionwhilethebathasinitialangularvelocityi.Inoursetup,viandihaveoppositesignswhenthebatterisswingingattheballasinFigure1,inwhicharrowspointinthepositivedirectionsforcorrespondingparameters.棒球棒的質(zhì)量為M,繞質(zhì)心的轉(zhuǎn)動慣量為I。以撞擊之前棒的質(zhì)心標系為參考坐標系,球的初速度為vi
Initial
Distancefrom棒的初始角速度為i。假設正方Figure1中所示。撞擊點位于距離棒的質(zhì)心l處 假設碰撞為正碰撞
碰撞之后,球速為vf,棒球棒質(zhì)心
Initial的速度為V,角速度為(這 物理量均表示大小,不帶符號)做恢復系數(shù),通常用e表示,e0示完全非彈性碰撞,e1表示完全彈性碰撞。在本模型中,做出如下
Figure1Thee對于棒上任何一點都相等eisconstantalongthelengthofthee對于任何vieisconstantforallvi給出模型的基本條件之后,有如下方程 動量守恒(Conservationoflinear MVm(v 角動量守恒(Conservationofangular 恢復系數(shù)(Definitionofcoefficientof e(vl)vV 由上述式子解出vifvf
mM1M這里 2 2 I是棒的有效質(zhì)量。(TheeffectivemassoftheForcalibrationpurposes,weusethefollowingdata,whicharetypicalofaregulationbatconnectingwithafastballinMajorLeagueBaseball.TheresultsareplottedinFigure2.為了最佳擊球點的位置有一個初步計,使用以下數(shù)據(jù),這些數(shù)據(jù)全美棒球的典型棒球棒的數(shù)據(jù)。結(jié)果如ure2所示。mM0.145m kg67m/60rad/eFigure2Finalvelocityvf(solidarcattop),swingspeedil(dottedrisingline),andeffectivemass(dashedfallingcurve)asafunctionofdistancel(inmeters)fromcenterofmass. umexitvelocityis27m/s,andthesweetspotis13cmfromthecenterofmass.Missingthesweetspotbyupto5cmresultsinatmost1m/sdifferencefromumvelocity,implyingarlativlywideswet5cm時最大速度減小1m/s,可見最佳擊球點的范圍較大。Fromthisexample,weseethatthesweetspotisdeterminedbyamultitudeoffactors,includingthelength,mass,andshofthebaseballbat;themassofthebaseball;andthecoefficientofrestitutionbetweenbatandball.Furthermore,thesweetspotisnotuniquelydeterminedbythebatandball:Italsodependsonthe ingbaseballspeedandthebatter’sswingspeed.Figure2alsoshowsintuitivelywhythesweetspotislocatedsomewherebetweenthecenterofmassand ofthebarrel.Asthepointofcollisionmovesout2wardalongthebat,theeffectivemassofthebatgoesdown2,sothatagreaterfractionoftheinitialkineticenergyisputintothebat’srotation.Atthesametime,therotationinthebatmeansthatthebatismovingfasterthanthecenterofmass(orhandle).Thesetwoeffectsworkinoppositedirectionstogiveauniquesweetspotthat’snotateitherendpoint.外移,棒的有效質(zhì)量減小2,因此的初始動能轉(zhuǎn)化為棒的轉(zhuǎn)動動能。另外由于棒的However,thismodellsonlypartofthestory. Indeed,someofourstartingassumptionscontradicteachother:然而,這個模型還只是揭示了問題的一部分。實際上最初的假設是相互的Wetreatedthebatasafreebodybecausethecollisiontimewassoshort.Inessence,duringthe1msofthecollision,theball“sees”onlythelocalgeometryofthebat,notthebatter’shandsonthehandle.Ontheotherhand,weassumedthatthebatwasperfectlyrigid—butthatmeansthattheball“sees”theentirebat.2”goesup”,”goes由于碰撞時間極短,把棒視為剛體。實際上,在1毫秒的接觸時間內(nèi),球只對棒的局部起作用,不會影響到握柄端。而另一方面,假設棒球棒是剛體,Wealsoassumedthatisconstantalongthelengthofthebatandfordifferentcollisionvelocities.Experimentalevidence[Adair1994]suggeststhatneitherissuecanbeignoredforanaccuratepredictionofthelocationofthesweetspot.還假設恢復系數(shù)對于棒長和任意初速度是常數(shù),實驗表明對于精確分析而言,Weneedamoresophisticatedmodeltoaddress 需要建立一個更完善的模型來彌補這些缺O(jiān)urWedrawfromBrody’srigid-bodymodelbutmoresofromCross[1999].OnecoulddescribeourworkasanadaptionofCross’sworktoactualbaseballbats.Nathan[2000]attemptedsucptionbutwasmisledbyincorrectintuitionabouttheroleofvibrations.WedescribehisapproachanderrorasawaytoexplainCross’sworkandtomotivateourwork.從Brody的剛體模型出發(fā),但是地采用了Cross的模型。的工作可以看是Crss的成果應用于實際棒球棒的變型。atan所誤導,對振動所起的作用估計不足。描述了他的方法和錯誤,以此來闡釋PreviousBrody’srigid-bodymodelcorrectlypredictstheexistenceofasweetspotnotattheendofthebat.Thatmodelsuffersfromthefactthatthebatisnotarigidbodyandexperiencevibrations.Onewaytoaccountforvibrationsistomodelthebatasaflexibleobject.Beamtheories(ofvaryingdegreesofaccuracyandcomplication)canmodelaflexiblebat.VanZandt[1992]wasthetocarryoutsuchanysis,modelingthebeamasaTimoshenkobeam,afourth-ordertheorythattakesintoaccountbothshearforcesandtensilestresses.Theequationsarecomplicatedandwewillnotneedthem.VanZandt’smodelassumestheballtobeuncoupledfromthebeamandsimplytakestheimpulseoftheballasagiven.Theresultingvibrationsofthebatareusedtopredictthevelocityofbeamattheimpactpoint(bysummingtheBrodyvelocitywiththevelocityofthedisplacementattheimpactpointduetovibrations)andhencetheexitvelocityoftheballfromtheequationsofthecoefficientofrestitution[VanZandt1992].理論(各種梁理論的精度和復雜度不同)適用于這一彈性體。VanZandt第一個將梁理了剪應力和軸向應力。該理論的方程形式很復雜,在這里不列出來。VanZandt的速度除了包括Brody模型中的速度外,還要加上振動引起的速度,再由恢復系數(shù)的表達式即可求出球的最終速度[VanZandt1992]。Cross[1999]modeledtheinteractionoftheimpactofaballwithuminumbeam,usingtheless-elaborateEuler-Bernoulliequationstomodelthepropagationofwaves.Inaddition,heprovidedequationstomodelthedynamicalcouplingoftheballtothebeamduringtheimpact.Afterdiscretizingthebeamspatially,heassumedthattheballactsasalossyspringcoupledtothesinglecomponentoftheregionoftheimpact.Cross使用了較不精確的歐拉-伯努利梁理論來分析鋁質(zhì)棒球棒受到棒球沖擊時的振波的。除此之外,他還提供了棒的耦合作用的方程。在將棒球棒之后Cross’sworkwasmotivatedbybothtennisracketsandbaseballbats,whichdifferimportantlyinthetime-scaleofimpact.Thebaseballbat’scollisionlastsonlyabout1ms,duringwhichthepropagationspeedofthewaveisveryimportant.Inthislocalviewoftheimpact,theimportanceofthebaseball’scouplingwiththebatisincreased.Crs為1毫秒左右,這段時間內(nèi)振動波的速度是很重要的。在撞擊的局Crossarguesthattheactualvibrationalmodesandnodepointsarelargelyirrelevantbecausetheinteractionislocalizedonthebat.Theboundaryconditionsmatteronlyifvibrationsreflectofftheboundaries;animpactnotcloseenoughtothebarrelendofthebatwillnotbeaffectedbytheboundarythere.Inparticular,apulsereflectedfromafreeboundaryreturnswiththesamesign(deflectedawayfromtheball,decreasingtheforceontheball,decreasingtheexitvelocity),butapulsereflectedfromafixedboundaryreturnswiththeoppositesign(deflectedtowardstheball,pushingitback,increasingtheexitvelocity).Awayfromtheboundary,weexpecttheexitvelocitytobeuniformalongnon-rotatingbat.Cross’smodelpredictsalloftheseeffects,andheexperimentallyverifiedthem.Inourmodel,weexpectsimilarphenomena,plusthenarrowingofthebarrelnearthehandletoactsomewhatlikeaboundary.件只在振動波到邊界的時候才起作用:沖擊點離棒的末端足夠近時,邊界條件才轉(zhuǎn)動的棒球棒來說,球速是一致的。Cross的模型考慮了上述所有因素,他還用實驗證明了他的考慮。在的模型中,也認為這樣的現(xiàn)象會發(fā)生,同時還考慮了握柄Nathan’smodelalsoattemptedtocombinethebestfeaturesofVanZandtandCross[Nathan2000].HistheoryusedthefullTimoshenkotheoryforthebeamandtheCrossmodelfortheball.Heevenacknowledgedthelocalnatureofimpact.Sowheredowedivergefromhim?Hiserrorstemsfromanoveremphasisontryingtoseparateouttheball’sinteractionwitheachseparatevibrationalmode.理論和Cross的棒球模型。他還承認了沖擊的局部效應。那么和他的區(qū)別在哪里呢?Thesignofinconsistencycomeswhenheusesthe“orthogonalityofeigenstates”todeterminehowmuchagivenimpulseexciteseaode.Theeigenstatesarenotorthogonal.Manytheoriesyieldsymmetricmatricesthatneedtobediagonalized,yieldingtheeigenstates;butTimoshenko’stheorydoesnot,duetothepresenceofodd-orderderivativesinitsequationsNathan’sstoryplaysoutbeautifullyifonlytheeigenstateswereactuallyorthogonal;butwehavenumericallycalculatedtheeigenstates,andtheyarenotevenapproximayorthogonal.Heusestheorthogonalitytodrawimportantconclusions:但是鐵摩辛柯梁理論的方程中含有奇次導數(shù)項,因此得不到對稱矩陣。Nathan的理論在模態(tài)具備正交性時很完美,但是計算了這些模態(tài)之后,發(fā)現(xiàn)它們根本不正交。Thelocationofthenodesofthevibrationalmodesare振動模態(tài)的節(jié)點位置很High-frequencyeffectscanbecompley高頻率效應可以完全忽Wedisagreewithbothofthese.(這兩點都不同意(這里突然拿出運動方程顯得有些突兀,下面給出推導過程連續(xù)系統(tǒng)的振動方程如下
MyKyF離散為n度系統(tǒng)之后,這里M是nn質(zhì)量矩陣(對稱矩陣,K是nn剛度矩陣(正定矩陣y(t是撓度向F(t是外力向量。本方程的解可由假設法或傅里葉變換得到,這里為了得到y(tǒng)sin(t該式對于任何t均成立,則有:
(K2M)0M1K2由此可解出n個模態(tài)向量n個相應的固有頻率。yM1KyM1令FM1[1
n即可得到文中這部分的相關(guān)方程,可見 為對稱矩陣,而非文中所說的稱矩陣還需的是,文中的下標均使用了愛因斯坦求和約定(Einstein Thecorrectderivationstartswiththefollowingequationofmotion,wherekisthepositionofimpact, yiisthedisplacementandFiistheexternalforceontheithsegmentofthebat,and isasymmetric3matrix:y(t) y(t)F Wewritethesolutionsasy(t) an(t),wherethecolumns4 areeigenmodes eigenvaluesn2.Explicitly,Hjkknn2 and indicatesthekthcomponent thentheigenmode.Thenwewritetheequationof a(t)2a(t)F kn a(t)2a(t) Inthelaststepweusedthefactthattheeigenmodesformacompletebasis.(這里運用了模態(tài)矩陣的正交性)FNathan’sp rusesontheright-handsidesimply knFkscaledbyanormalizationconstant.Atglance,thisseemslikeaminortechnicaldetail,butthephysicshereisFimportant.Wecalculatethat
termsstayfairlylargeforevenhighvalueofncorrespondingtothehighfrequencymode(kisjustthepositionofimpact).Thismeansthattherearesignificanthighfrequencycomponents,atleastat.Infact,thehighfrequencymodesarenecessaryfortheimpulsetopropagateslowlyasawavepacket.InNathan’smodel,onlytheloweststandingmodesareexcited;sotheentirebatstartsvibratingassoonastheballhits.Thiscontradictshisearlierbeliefinlocalizedcollision(whichweagreewith)thatthecollisionisoversoquicklythattheball“sees”onlypartofthebat.Nathsoclaimsthatthesweetspotisrelatedtothenodesofthelowestmode,whichcontradictslocality:Thelocationofthelowestordernodesdependsonthegeometryoftheentirebat,includingtheboundaryconditionsatthehandle.Nathan在他的里對右端項使用了正交化常數(shù)。乍一看這只是一個小的數(shù)學處理 但是這里的物理意義是很重要的計算后發(fā)現(xiàn),即使在n 很大的時候,右端項 對應的數(shù)值依然很大,這和高頻模態(tài)有關(guān)(k是沖擊點位置。實際上,高頻模態(tài)對沖擊的慢速是必要的。在Nathan的模型里,只有最低的幾階模態(tài)受到激發(fā),因此整是同意的)相,撞擊很快就結(jié)束了以至于球與棒的作用僅限于局部區(qū)域。Nathan還聲稱最佳擊球點的位置和最低階模態(tài)的節(jié)點位置有關(guān),這也和局部撞擊相矛 WhiletheinconsistencyintheNathanmodelmaycancelout,webuildourmodelonamorerigorousfooting.Forsimplicity,weusetheEuler-BernoulliequationsratherthefullTimoshenkoequations.Thedifferenceisthattheformerignoreshearforces.Thisshouldbeacceptable;Nathanpointsoutthathismodelislargelyinsensitivetotheshearmodulus.Wesolvethedifferentialequationsdirectlyafterdiscretizinginspacerather intomodes.Intheseways,wearefollowingtheworkofCrossNathan的模型的缺點可能抵消它的長處,因此在更加嚴謹?shù)幕A上建立的模型。為簡化起見,采用歐拉—伯努利方程而不是完整的鐵摩辛柯方程。前者忽略了剪切力。這一點是可以接受的;Nathan他的模型對剪切模量很不敏感。我們直接對該偏微分方程離散求解,而沒有采用模態(tài)分解。從這個意義上來說,沿用了Cross的方法。Ontheotherhand,ourmodelextendsCross’sworkinseveralkey另一方面,的模型在以下幾個方面擴展了Cross的工作Weexamineparametersmuchclosertothoserelevanttobaseball.Cross’modelfocusedontennis.Featuringuminumbeamofwidth0.6cmbeinghitwithaballof42gataround1m/s.Forbaseball,wehaveuminumorwoodbatofradiuswidth6cmbeinghitwithaballof145gtravellingat40m/s(whichinvolves5000timesasmuchimpactenergy).采用的是棒球的參數(shù)。Cross的模型則專注于網(wǎng)球,以一根直徑為0.6cm的鋁棒球棒,擊打一個重145g、速40m/s的棒球(動能為前者的5000倍。Weallowforavaryingcrosssection,animportantfeatureofareal考慮了截面沿棒長的變化,這是實際棒球棒的一個重要特Weallowthebattohavesomeinitialangularvelocity.Thiswillletusscrutinizetherigid-bodymodelpredictionthathigherangularvelocitiesleadtothe umpowerpointmovingfartherupthebarrel.Toreiterate,themainfeaturesofourmodel再次重申,模型的主要特點是anemphasisontheballcouplingwiththe重點考慮球與棒的耦合Finitespeedofwavepropagationinashorttime-scale,振動波的速度有Adaptiontorealistic更接近真實的棒Thesearenaturaloutgrowthsoftheapproachesinthe這些是文獻中所述方法的自然延伸MathematicsofOur取梁的微元段dx列力平衡方程和力矩平衡方程y方向力平衡:x 2 xdx Fs(Fs sdx)F 化簡得:2yFsl 力矩平衡:
x MFdx(M dx) 化簡得:
F 由材料力學:2 EI 綜上得:
2y
2(EI2y)F(x,t)l OurequationsareadiscretizedversionoftheEuler-Bernoulli 2y(z, 2y(z, F(z, t z z ( (
2 2(YI2y)F(z,t)
l isthemassdensity,(質(zhì)量密度(應該為線密度l
isthedisplacement,(撓度istheexternalforceinourcase,appliedbytheball),(外力YistheYoung’smodulusofthematerialaconstantand(楊氏模量IisthesecondmomentofareaR4/ forasoliddisc).(截面慣性矩(A是棒的截面積,z是棒的自然坐標,對z離散,步長為,采用中心差分)WediscretizezinstepsofTheonlyforceisfromtheballinthenegativedirectiontothekthsegment.Ourdiscretizedequationis:d2yiF(t)Y ( 2y y 2Ii(yi12yiyi1)Ii1(yi2yi1這里把第 個單元(即棒球作用的單元)上的分布力等效為集中力(乘以單元步長Ourdynamicvariablesarey1throughyN.Forafixedleftend,retendy1y00.Forafreeleftend,retendy1y0y0y1y1Theconditionsontherightendareogous.ThesearethesameconditionsthatCrossFinally,wehaveanadditionalvariablefortheball’sposition(relativetosomezerow(t).Initially,w(t)ispositiveand w(t)isnegative,sotheballismovingfromthepositivedirectiontowardsthenegative.Letu(t)w(t)yk(t).Thisvariablerepresentsthecompressionoftheball,andwereplace F(t) withF(u(t),u(t)).Initially,u(t)0andu(t)vball.TheforcebetweentheballandthebattakestheformofhysteresiscurvessuchastheonesshowninFigure3.因此棒球向負方向運動。令u(t)w(t)yk(t,u(t)表示球的壓縮量,作用力是時間的函數(shù),因此也是u(t和u(t的函數(shù)。初始時刻u(t0u(tvball。球與棒的作用力與球的壓縮量的關(guān)系如圖3所示。Figure3Ahysteresiscurveusedinourmodeling, umcompression1.5Thehighercurveistakenwhenu(t)0(compression)andthelowercurvewhenu(t)0(expansion).Whenu(t)0,theforceiszero.Theequationofmotionfortheballisw(t)u(t)y(t) Wehaveeliminatedthevariable圖中上方的曲線為壓縮過程,u(t)0,下方的曲線為擴張過程,u(t)0作用力為零。球的運動方程如下:kw(t)u(t)y(t)k
這 就消去了wWehaveyettospecifythefunctionF(u(t),u(t)).Ascanbeseenin s[BaseballResearchCentern.d.],theballcompresssignificantly(oftenmorethan1cm)inacollision.Thecompressionand pressionislossy.Wecouldmodelthislossbysubtractingafractionoftheball’senergyafterthecollision;thatapproachisgoodenoughformanypurposes,butweinsteadfollowNathananduseanonlinearspringwithhysteresis.但是還沒有確定函數(shù)F(u(t),u(t))。正如在里看到的,棒球在撞擊過程中顯著SinceWFdx,thetotalenergylostistheareabetweenthetwocurvesinFblemwithcreatinghysteresiscurvesisthatonedoesnotknowthe compression(i.e.wheretostartdrawingthebottomcurve)untilaftersolvingtheequationsofmotion.Inpractice,wesolvetheequationintwosteps.3,用兩步來解方程。Themainassumptionsofourmodelderivefromthemainassumptionsofeach模型的主要假設就是對這兩個方程(方程(1)和(2))的假設Theistheexactformofthehysteresiscurveoftheball.Cross[1999]arguesthattheexactformofthecurveisnotveryimportantaslongasthedurationofimpact,magnitudeofimpulse, umcompressionoftheball,andenergylossareroughly續(xù)時間,沖擊的大球的最大壓縮量和能量損失大概正確。BoththeTimoshenkoandEuler—Bernoullitheoriesignoreazimuthalandlongitudinalwaves.Thisisafundamentalassumptionbuiltintoalloftheapproachesintheliterature.Assumingthattheimpactoftheballistransverseandtheballdoesnotrotate,theassumptionisjustified.鐵摩辛柯和歐拉伯—努利梁理論都忽略了方位波和縱波。這是文獻中所有方法本假設。假設棒球的沖擊是橫向的,棒球不發(fā)生旋轉(zhuǎn),這樣假設是合理的Theassumptionsofourmodelarethesameasthoseintheliterature,sotheyarebytheliterature’s()上法”求解,這里給出全部求解過程對方程(1)散后的棒的振動方程為:d2yi F(t) ( 2y y l l 2Ii(yi12yiyi1)Ii1(yi2yi1對方程
散后的球的運動程為
i , d2u
)F(u,du)
[
2I
l
l
k
k
k
k yk1(k1)21()聯(lián)立方程()和()求解。由圖,假設作用力與壓縮量的關(guān)系曲線的形式,假設壓縮段為直線,松弛段為:1.52將方程(3)和(4)聯(lián)寫成矩陣形式從而轉(zhuǎn)化為常微分方程組的初值問題,可利用的相關(guān)函數(shù)求d2 dtd2 dt
y2 y1d2
dt
d2 Y dtY d2 k
(N6)(N k dt yk1 yk2 yN2 dt
d
N2Fdt
需注意的是,上式左端未知量為加速度項,右端未知量為位移項,在球棒作用期間,位移的變化遠遠快于加速度的變化,因此這是一個剛性問題(F()表示成u()的函數(shù))其中 T
k
k
k
k
3k 3 11Ik11Ik(2Ik12Ik (Ik1+4Ik+Ik1(2Ik2IkIk+l寫成便于用ode求解的形式是:其中
PTP[y2, y2,u,y,y y T I 0
Q[y2,
2(N6)2(NyN2,u,y2, 設球壓縮到最大對應的時間為t1,從時刻t1到球離開棒的時間為則 F(u) 初始條件為
y2y1y0y1 yN2u其中w為棒的角速度
i 這里由于t1和t2的值未知,而t1t21.4ms,只好對t1和t2的值進行SimulationOurmodel’stwomainfeaturesarewavepropagationinthebatandpessonofheba.heaersustaedbyheasmetyofhepotnigurea.hspotasoeveasheie-scaeofhecoson:hebaleaeshebat.4saferipac.Dungandafercoson,shockwaespopaaehouhheba.模型的兩個主要特點就是同時振動波在棒中的和球的壓縮擴張程。后a.4毫秒離開棒球棒。碰撞期間和碰撞后,振動波在棒球棒中。Inthisexample,thebatstruck60cmfromthehandle.Whatdoesthecollisionlooklikeat10cmfromthehandle?Figure4bshowstheanswer:Theotherendofthebatdoesnotfeelanythinguntilabout0.4msanddoesnotfeelsignificantforcesuntilabout1.0ms.Bythetimethatportionofthebatswingsback(almost2.0ms),theballhasalreadyleftcontactwiththebat.Thisilluminatesanimportantpoint:Weareconcernedonlywithforcesontheballth twithinthe1.4mstime-frameofthecollision.Anywavestakinglongertoreturntotheimpactlocationdonotaffectexitvelocity.答案:該處知道撞擊發(fā)生后大約0.4毫秒才發(fā)生振動,直到大約1.0毫秒后才達到最位移。到位移重新達到最小值時(撞擊發(fā)生2.0毫秒之后球已經(jīng)飛離了棒。這也說Havingdemonstratedthebasicfeaturesofourmodel,wenowreplicatesomeofresultsbutwithbaseball-likeparameters.InFigure5a,weshowthattheeffectsoffixed-free-boundaryconditionsareinagreementwithCross’s球的參數(shù)。在圖5a中,表明在固端邊界和邊界條件下的結(jié)果都和Cross的模Asweexpected,fixedboundariesenhancetheexitvelocityandfreeboundariesreducethem.Fromthisresult,weseetheeffectofthesh ofthebat.Thehandledoesindeedactlikeafreeboundary.Thedistancebetweentheboundariesistoosmalltogetaflatzoneintheexitvelocityvs.positioncurve.Ifweextendthebarrelby26cm.aflatzonedevelops(Figure5b;noticethechangeinaxes).Intuitively,thisflatzoneexistsbecausetheball“sees”onlythelocalgeometryofthebatandtheboundariesaretoofarawaytohavesubstantial正如預料的,固端邊界增大了球速,邊界減小了球速。從這一結(jié)果可以看出棒的形狀的影響。握柄端的作用相當于一個邊界。兩個邊界之間的距離較短時,最佳擊球區(qū)較窄,如果增大棒長26cm,最佳擊球區(qū)會變寬(圖5b。直觀的解釋是,在兩端邊界距離較遠時,棒球的作用僅限于沖擊的局部區(qū)域,最佳擊球區(qū)就更加平緩Fromnowon,weusean84-cmbatfreeonbothends,wherepositionzerodenotesthehandleend.Inthisbasecase,thesweetspotisat70cm.Weinvestigatethedependenceoftheexitspeedontheinitialangularvelocity.Accordingtorigid-bodymodels,thesweetspotisexactlyatthecenterofmassifthebathasnoangularvelocity.InFigure6, theresultsofchangingtheangularvelocity.Ourresultscontrastgreatlywiththesimpleexamplepresentedearlier.Whiletheangular-rotationeffectisstillthere,theeffectivemassplaysonlyanegligibleroleindeterminingtheexitspeed.Inotherwords,thebatisnotarigidbodybecausetheentirebatdoesnotreactinstantly.Thedominatingeffectisfromtheboundaries:ofthebarrelandwherethebarreltrsoff.Thesefreeendscauseasignificantdropinexitvelocity.Increasingtheangularvelocityofthebatincreasestheexitvelocity,inpartjustbecausetheimpactvelocityisgreater(byafactorofdistancefromthecenterofmassofthebat).
witimes位置為70cm。研究了球速對初始角速度的依賴性。根據(jù)剛體模型,在棒球棒沒有初始角速度時,最佳擊球點就在棒的質(zhì)心位置。在圖6中,給出了改變角速度后棒球棒不是剛體。起主要作用的是邊界條件:棒的末端和棒的細端。這些邊界使速度等于角速度wi乘以作用點距離質(zhì)心的距離lInFigure7a,weshowthatnearthesweetspot(at0.7m),inincreasingangularvelocityactuallydecreasestheexcessexitvelocity(relativetotheimpactvelocity).Weshouldexpectthis,sinceathigherimpactvelocity,moreenergyislosttotheball’scompressionandpression.Toconfirmthisresult,wealsorecreatetheplotinFigure7bbutwithoutthehysteresiscurve—inwhichcasethiseffectdisappears.Thisexampleisoneofthefewplaceswherethehysteresiscurvemakesadifference,confi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 培訓服務協(xié)議
- 2026年臨床營養(yǎng)支持合同
- 2025年青島市檢察機關(guān)公開招聘聘用制書記員25人的備考題庫及參考答案詳解
- 2025年鯉城區(qū)東門實驗小學頂崗合同教師招聘備考題庫及完整答案詳解一套
- 2025年葫蘆島市生態(tài)環(huán)境局公開遴選工作人員備考題庫及一套完整答案詳解
- 2025年濟寧市檢察機關(guān)招聘聘用制書記員的備考題庫(31人)含答案詳解
- 2025年首都醫(yī)科大學附屬北京朝陽醫(yī)院石景山醫(yī)院派遣合同制職工招聘備考題庫及答案詳解一套
- 2025年固鎮(zhèn)縣司法局選聘專職人民調(diào)解員16人備考題庫附答案詳解
- 2025年醫(yī)院醫(yī)保年度總結(jié)及工作計劃(五篇)
- 協(xié)管員面試題及答案
- 員工宿舍分配管理制度
- 話劇社團筆試題及答案解析
- 2025《安全生產(chǎn)法》培訓課件
- 網(wǎng)絡安全意識提升培訓課件
- 專業(yè)倫理與職業(yè)素養(yǎng)-計算機、大數(shù)據(jù)與人工智能課件:計算的學科與職業(yè)
- 《機器人用力觸覺傳感器分級規(guī)范》
- 四川省成都市2025屆高三上學期第一次診斷性考試化學檢測試卷(附答案)
- 兒童心理健康教育的實施策略
- 鋼軌探傷鋼軌探傷試塊課件
- 監(jiān)理單位工程項目廉潔教育
- 頸椎病的中醫(yī)診治課件
評論
0/150
提交評論