用正多邊形拼地板講_第1頁(yè)
用正多邊形拼地板講_第2頁(yè)
用正多邊形拼地板講_第3頁(yè)
用正多邊形拼地板講_第4頁(yè)
用正多邊形拼地板講_第5頁(yè)
已閱讀5頁(yè),還剩36頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

用正多邊形鋪設(shè)地面1復(fù)習(xí):正n邊形內(nèi)角和公式:(n-2)×180°正n邊形的每個(gè)內(nèi)角度數(shù):180°360°540°720°1080°60°90°108°120°

135°(n-2)×180°完成下列表格填空:(n-2)×180°n(n-2)×180°n=180°--

360°n2不知同學(xué)們是否曾留意過我們周圍的墻面和地面是用什么形狀的板磚拼鋪而成的?情景設(shè)置3地磚請(qǐng)你欣賞5浴室6瓷磚的鋪設(shè):思考:

用同一種正多邊形鋪地板,哪些能密鋪不留空隙呢?

鋪地板的學(xué)問8(1)正三角形的平面鑲嵌60°60°60°60°60°60°正三角形的每個(gè)內(nèi)角為(3-2)×180°÷3=60°圍繞每一點(diǎn)有6個(gè)角,6個(gè)角和為6×60°=360°9(2)正方形的平面鑲嵌90°90°90°90°正方形的每個(gè)內(nèi)角為(4-2)×180°÷4=90°圍繞每一點(diǎn)有4個(gè)角,4個(gè)角和為4×90°=360°10正五邊形能鋪滿平面嗎?No!正五邊形正六邊形120°+120°+120°=360°正五邊形的每個(gè)內(nèi)角為(5-2)×180°÷5=108°圍繞每一點(diǎn)有3個(gè)角,3個(gè)角和為3×108°=324°≠360°11正六邊形鋪地板正六邊形的每個(gè)內(nèi)角為(6-2)×180°÷6=120°圍繞每一點(diǎn)有3個(gè)角,3個(gè)角和為3×120°=360°12正八邊形呢?想一想,為什么?不能!也不能!>360°>360°正八邊形的每個(gè)內(nèi)角為(8-2)×180°÷8=135°圍繞每一點(diǎn)有3個(gè)角,3個(gè)角和為3×135°=405°正七邊形的每個(gè)內(nèi)角為(7-2)×180°÷7=128.6°圍繞每一點(diǎn)有3個(gè)角,3個(gè)角和為3×128.6°=385.8°當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角加在一起組成一個(gè)周角,即幾個(gè)角的和為360°時(shí),就可拼成一個(gè)既不留空白,又不相互重疊的平面圖。

思考:為什么有的正多邊形能拼成平面,有的卻不行呢?14用一種正多邊形鋪地板時(shí)只能有正三角形、正方形和正六邊形三種小結(jié):任意四邊形用兩種正多邊形進(jìn)行平面鑲嵌1)試用正三角形與正方形進(jìn)行平面鑲嵌,(先用紙片進(jìn)行實(shí)驗(yàn),再理論解釋)2)試用正三角形與正六邊形進(jìn)行平面鑲嵌,先理論探討有幾種情況,再用紙片進(jìn)行拼圖18正方形、正三角形正六邊形、正三角形2×120o+2×60o=360o120o+4×60o=360o正十二邊形、正三角形正八邊形、正方形正五邊形、正十邊形圍繞一點(diǎn)能拼成360o,但能擴(kuò)展到整個(gè)平面,即鋪滿地面嗎?用正五邊形和正十邊形拼圖正五邊形、正十二邊形的每個(gè)內(nèi)角分別為:108°、144°圍繞每一點(diǎn)的所有角和為2×108°+144°=360°但從圖上可知:它們并不能鋪滿整個(gè)地面特殊情況:一定要牢記28兩種正多邊形拼地板圍繞一點(diǎn)拼在一起的兩種正多邊形的內(nèi)角之和為360o.關(guān)鍵:模型:正多邊形1個(gè)數(shù)×正多邊形1內(nèi)角度數(shù)+正多邊形2個(gè)數(shù)×正多邊形2內(nèi)角度數(shù)=360o從正三角形、正方形、正六邊形、正八邊形、正十邊形、正十二邊形中任取三種進(jìn)行組合是否也能鋪滿地面呢?思考正六邊形、正方形、正三角形正十二邊形、正方形、正三角形正十二邊形、正方形、正六邊形這節(jié)課你有哪些收獲?

當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角加在一起恰好組成一個(gè)周角時(shí),就拼成一個(gè)平面圖形。正三角形與正方形正三角形正方形正六邊形正三角形與正六邊形正三角形與正十二邊形正三角形、正方形與正六邊形正三角形、正四邊形與正十二邊形正方形、正六邊形與正十二邊形371、下列多邊形一定不能進(jìn)行平面鑲嵌的是()

A、三角形B、正方形C、任意四邊形D、正八邊形2、用正方形一種圖形進(jìn)行平面鑲嵌時(shí),在它的一個(gè)頂點(diǎn)周圍的正方形的個(gè)數(shù)是()

A、3B、4C、5D、63、如果只用一種正多邊形作平面鑲嵌,而且在每一個(gè)正多邊形的每一個(gè)頂點(diǎn)周圍都有6個(gè)正多邊形,則該正多邊形的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論