版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
BasicsofStudyDesignJaniceWeinbergScDAssistantProfessorofBiostatisticsBostonUniversitySchoolofPublicHealthBasicsofStudyDesignJaniceW1BasicsofStudyDesignBiasandvariabilityRandomization:whyandhow?Blinding:whyandhow?GeneralstudydesignsBasicsofStudyDesignBiasand2BiasandVariabilityTheclinicaltrialisconsideredtobethe“goldstandard”inclinicalresearchClinicaltrialsprovidetheabilitytoreducebiasandvariabilitythatcanobscurethetrueeffectsoftreatmentBiasaffectsaccuracyVariabilityaffectsprecisionBiasandVariabilityTheclinic3Bias:anyinfluencewhichactstomaketheobservedresultsnon-representativeofthetrueeffectoftherapy
Examples:healthierpatientsgiventreatmentA,sickerpatientsgiventreatmentBtreatmentAis“newandexciting”soboththephysicianandthepatientexpectbetterresultsonAManypotentialsourcesofbiasBias:anyinfluencewhichacts4Variability:highvariabilitymakesitmoredifficulttodiscerntreatmentdifferencesSomesourcesofvariabilityMeasurementinstrumentobserverBiologicwithinindividualsbetweenindividualsCannotalwayscontrolforallsources(andmaynotwantto)Variability:highvariability5Fundamentalprinciple
incomparingtreatmentgroups:GroupsmustbealikeinallimportantaspectsandonlydifferinthetreatmenteachgroupreceivesInpracticalterms,“comparabletreatmentgroups”means“alikeontheaverage”Fundamentalprinciple
incomp6Whyisthisimportant?IfthereisagroupimbalanceforanimportantfactorthenanobservedtreatmentdifferencemaybeduetotheimbalanceratherthantheeffectoftreatmentExample:DrugXversusplaceboforosteoporosisAgeisariskfactorforosteoporosisOldersubjectsareenrolledinDrugXgroupTreatmentgroupcomparisonwillbebiasedduetoimbalanceonageWhyisthisimportant?Ifthere7Howcanweensurecomparabilityoftreatmentgroups?WecannotensurecomparabilitybutrandomizationhelpstobalanceallfactorsbetweentreatmentgroupsIfrandomization“works”thengroupswillbesimilarinallaspectsexceptforthetreatmentreceivedHowcanweensurecomparabilit8RandomizationAllocationoftreatmentstoparticipantsiscarriedoutusingachancemechanismsothatneitherthepatientnorthephysicianknowinadvancewhichtherapywillbeassignedSimplestCase:eachpatienthasthesamechanceofreceivinganyofthetreatmentsunderstudyRandomizationAllocationoftre9SimpleRandomizationThinkoftossingacoineachtimeasubjectiseligibletoberandomizedHEADS: TreatmentATAILS: TreatmentBApproximately?willbeassignedtotreatmentsAandBRandomizationusuallydoneusingarandomizationscheduleoracomputerizedrandomnumbergeneratorSimpleRandomizationThinkoft10ProblemwithSimpleRandomization:Mayresultinsubstantialimbalanceineitheranimportantbaselinefactorand/orthenumberofsubjectsassignedtoeachgroupSolution:Useblockingand/orstratifiedrandomizationProblemwithSimpleRandomizat11BlockingExample:Ifwehavetwotreatmentgroups(AandB)equalallocation,andablocksizeof4,randomassignmentswouldbechosenfromtheblocks1)AABB 4)BABA2)ABAB 5)BAAB3)ABBA 6)BABABlockingensuresbalanceafterevery4thassignmentBlockingExample:Ifwehavetw12StratificationExampleToensurebalanceonanimportantbaselinefactor,createstrataandsetupseparaterandomizationscheduleswithineachstratumExample:ifwewantpreventanimbalanceonageinanosteoporosisstudy,firstcreatethestrata“<75years”and“75years”thenrandomizewithineachstratumseparatelyBlockingshouldbealsobeusedwithineachstratumStratificationExampleToensur13AlternativestoRandomizationRandomizationisnotalwayspossibleduetoethicalorpracticalconsiderationsSomealternatives:HistoricalcontrolsNon-randomizedconcurrentcontrolsDifferenttreatmentperphysicianSystematicalternationoftreatmentsSourcesofbiasforthesealternativesneedtobeconsideredAlternativestoRandomizationR14BlindingMaskingtheidentityoftheassignedinterventionsMaingoal:avoidpotentialbiascausedbyconsciousorsubconsciousfactorsSingleblind: patientisblindedDouble
blind: patientandassessing investigatorareblindedTriple
blind: committeemonitoring responsevariables(e.g. statistician)isalsoblindedBlindingMaskingtheidentityo15HowtoBlindTo“blind”patients,canuseaplaceboExamplespillofsamesize,color,shapeastreatmentshamoperation(anesthesiaandincision)foranginareliefshamdevicesuchasshamacupuncture
HowtoBlindTo“blind”patient16WhyShouldPatientsbeBlinded?Patientswhoknowtheyarereceivinganeworexperimentalinterventionmayreportmore(orless)sideeffectsPatientsnotonneworexperimentaltreatmentmaybemore(orless)likelytodropoutofthestudyPatientmayhavepreconceivednotionsaboutthebenefitsoftherapyPatientstrytogetwell/pleasephysiciansWhyShouldPatientsbeBlinded17Placeboeffect–responsetomedicalinterventionwhichresultsfromtheinterventionitself,notfromthespecificmechanismofactionoftheinterventionExample:FisherR.W.JAMA1968;203:418-419
46patientswithchronicsevereitchingrandomlygivenoneoffourtreatmentsHighitchingscore=moreitchingTreatment ItchingScore cyproheptadineHCI 27.6 trimeprazinetartrate 34.6 placebo 30.4 nothing 49.6Placeboeffect–responsetom18WhyShouldInvestigatorsbeBlinded?TreatingphysiciansandoutcomeassessinginvestigatorsareoftenthesamepeoplePossibilityofunconsciousbiasinassessingoutcomeisdifficulttoruleoutDecisionsaboutconcomitant/compensatorytreatmentareoftenmadebysomeonewhoknowsthetreatmentassignment“Compensatory”treatmentmaybegivenmoreoftentopatientsontheprotocolarmperceivedtobelesseffectiveWhyShouldInvestigatorsbeBl19CanBlindingAlwaysbeDone?Insomestudiesitmaybeimpossible(orunethical)toblindatreatmentmayhavecharacteristicsideeffectsitmaybedifficulttoblindthephysicianinasurgeryordevicestudySourcesofbiasinanun-blindedstudymustbeconsideredCanBlindingAlwaysbeDone?In20GeneralStudyDesignsManyclinicaltrialstudydesignsfallintothecategoriesofparallelgroup,dose-ranging,cross-overandfactorialdesignsTherearemanyotherpossibledesignsandvariationsonthesedesignsWewillconsiderthegeneralcasesGeneralStudyDesignsManyclin21GeneralStudyDesignsParallelgroupdesignsGeneralStudyDesignsParallel22GeneralStudyDesignsDose-RangingStudiesGeneralStudyDesignsDose-Rang23GeneralStudyDesignsCross-OverDesignsGeneralStudyDesignsCross-Ove24GeneralStudyDesignsFactorialDesignsGeneralStudyDesignsFactorial25Cross-OverDesignsSubjectsarerandomizedtosequencesoftreatments(AthenBorBthenA)Usesthepatientashis/herowncontrolOftena“wash-out”period(timebetweentreatmentperiods)isusedtoavoida“carryover”effect(theeffectoftreatmentinthefirstperiodaffectingoutcomesinthesecondperiod)Canhaveacross-overdesignwithmorethan2periodsCross-OverDesignsSubjectsare26Cross-OverDesignsAdvantage:treatmentcomparisonisonlysubjecttowithin-subjectvariabilitynotbetween-subjectvariabilityreducedsamplesizesDisadvantages:strictassumptionaboutcarry-overeffectsinappropriateforcertainacutediseases(whereaconditionmaybecuredduringthefirstperiod)dropoutsbeforesecondperiodCross-OverDesignsAdvantage:t27Cross-OverDesignsAppropriateforconditionsthatareexpectedtoreturntobaselinelevelsatthebeginningofthesecondperiodExamples:TreatmentofchronicpainComparisonofhearingaidsforhearinglossMouthwashtreatmentforgingivitisCross-OverDesignsAppropriate28FactorialDesignsAttemptstoevaluatetwointerventionscomparedtoacontrolinasingleexperiment(simplestcase)Animportantconceptforthesedesignsisinteraction(sometimescalledeffectmodification)Interaction:TheeffectoftreatmentAdiffersdependinguponthepresenceorabsenceofinterventionBandvice-versa.FactorialDesignsAttemptstoe29FactorialDesignsAdvantages:Ifnointeraction,canperformtwoexperimentswithlesspatientsthanperformingtwoseparateexperimentsCanexamineinteractionsifthisisofinterestDisadvantages:Addedcomplexitypotentialforadverseeffectsdueto“poly-pharmacy”FactorialDesignsAdvantages:30FactorialDesignsExample:Physician’sHealthStudyPhysiciansrandomizedto:aspirin(topreventcardiovasculardisease)beta-carotene(topreventcancer)aspirinandbeta-caroteneneither(placebo)Stampfer,Buring,Willett,Rosner,EberleinandHennekens(1985)The2x2factorialdesign:it’sapplicationtoarandomizedtrialofaspirinandcaroteneinU.S.physicians.Stat.inMed.9:111-116.FactorialDesignsExample:Phy31BasicsofStudyDesignJaniceWeinbergScDAssistantProfessorofBiostatisticsBostonUniversitySchoolofPublicHealthBasicsofStudyDesignJaniceW32BasicsofStudyDesignBiasandvariabilityRandomization:whyandhow?Blinding:whyandhow?GeneralstudydesignsBasicsofStudyDesignBiasand33BiasandVariabilityTheclinicaltrialisconsideredtobethe“goldstandard”inclinicalresearchClinicaltrialsprovidetheabilitytoreducebiasandvariabilitythatcanobscurethetrueeffectsoftreatmentBiasaffectsaccuracyVariabilityaffectsprecisionBiasandVariabilityTheclinic34Bias:anyinfluencewhichactstomaketheobservedresultsnon-representativeofthetrueeffectoftherapy
Examples:healthierpatientsgiventreatmentA,sickerpatientsgiventreatmentBtreatmentAis“newandexciting”soboththephysicianandthepatientexpectbetterresultsonAManypotentialsourcesofbiasBias:anyinfluencewhichacts35Variability:highvariabilitymakesitmoredifficulttodiscerntreatmentdifferencesSomesourcesofvariabilityMeasurementinstrumentobserverBiologicwithinindividualsbetweenindividualsCannotalwayscontrolforallsources(andmaynotwantto)Variability:highvariability36Fundamentalprinciple
incomparingtreatmentgroups:GroupsmustbealikeinallimportantaspectsandonlydifferinthetreatmenteachgroupreceivesInpracticalterms,“comparabletreatmentgroups”means“alikeontheaverage”Fundamentalprinciple
incomp37Whyisthisimportant?IfthereisagroupimbalanceforanimportantfactorthenanobservedtreatmentdifferencemaybeduetotheimbalanceratherthantheeffectoftreatmentExample:DrugXversusplaceboforosteoporosisAgeisariskfactorforosteoporosisOldersubjectsareenrolledinDrugXgroupTreatmentgroupcomparisonwillbebiasedduetoimbalanceonageWhyisthisimportant?Ifthere38Howcanweensurecomparabilityoftreatmentgroups?WecannotensurecomparabilitybutrandomizationhelpstobalanceallfactorsbetweentreatmentgroupsIfrandomization“works”thengroupswillbesimilarinallaspectsexceptforthetreatmentreceivedHowcanweensurecomparabilit39RandomizationAllocationoftreatmentstoparticipantsiscarriedoutusingachancemechanismsothatneitherthepatientnorthephysicianknowinadvancewhichtherapywillbeassignedSimplestCase:eachpatienthasthesamechanceofreceivinganyofthetreatmentsunderstudyRandomizationAllocationoftre40SimpleRandomizationThinkoftossingacoineachtimeasubjectiseligibletoberandomizedHEADS: TreatmentATAILS: TreatmentBApproximately?willbeassignedtotreatmentsAandBRandomizationusuallydoneusingarandomizationscheduleoracomputerizedrandomnumbergeneratorSimpleRandomizationThinkoft41ProblemwithSimpleRandomization:Mayresultinsubstantialimbalanceineitheranimportantbaselinefactorand/orthenumberofsubjectsassignedtoeachgroupSolution:Useblockingand/orstratifiedrandomizationProblemwithSimpleRandomizat42BlockingExample:Ifwehavetwotreatmentgroups(AandB)equalallocation,andablocksizeof4,randomassignmentswouldbechosenfromtheblocks1)AABB 4)BABA2)ABAB 5)BAAB3)ABBA 6)BABABlockingensuresbalanceafterevery4thassignmentBlockingExample:Ifwehavetw43StratificationExampleToensurebalanceonanimportantbaselinefactor,createstrataandsetupseparaterandomizationscheduleswithineachstratumExample:ifwewantpreventanimbalanceonageinanosteoporosisstudy,firstcreatethestrata“<75years”and“75years”thenrandomizewithineachstratumseparatelyBlockingshouldbealsobeusedwithineachstratumStratificationExampleToensur44AlternativestoRandomizationRandomizationisnotalwayspossibleduetoethicalorpracticalconsiderationsSomealternatives:HistoricalcontrolsNon-randomizedconcurrentcontrolsDifferenttreatmentperphysicianSystematicalternationoftreatmentsSourcesofbiasforthesealternativesneedtobeconsideredAlternativestoRandomizationR45BlindingMaskingtheidentityoftheassignedinterventionsMaingoal:avoidpotentialbiascausedbyconsciousorsubconsciousfactorsSingleblind: patientisblindedDouble
blind: patientandassessing investigatorareblindedTriple
blind: committeemonitoring responsevariables(e.g. statistician)isalsoblindedBlindingMaskingtheidentityo46HowtoBlindTo“blind”patients,canuseaplaceboExamplespillofsamesize,color,shapeastreatmentshamoperation(anesthesiaandincision)foranginareliefshamdevicesuchasshamacupuncture
HowtoBlindTo“blind”patient47WhyShouldPatientsbeBlinded?Patientswhoknowtheyarereceivinganeworexperimentalinterventionmayreportmore(orless)sideeffectsPatientsnotonneworexperimentaltreatmentmaybemore(orless)likelytodropoutofthestudyPatientmayhavepreconceivednotionsaboutthebenefitsoftherapyPatientstrytogetwell/pleasephysiciansWhyShouldPatientsbeBlinded48Placeboeffect–responsetomedicalinterventionwhichresultsfromtheinterventionitself,notfromthespecificmechanismofactionoftheinterventionExample:FisherR.W.JAMA1968;203:418-419
46patientswithchronicsevereitchingrandomlygivenoneoffourtreatmentsHighitchingscore=moreitchingTreatment ItchingScore cyproheptadineHCI 27.6 trimeprazinetartrate 34.6 placebo 30.4 nothing 49.6Placeboeffect–responsetom49WhyShouldInvestigatorsbeBlinded?TreatingphysiciansandoutcomeassessinginvestigatorsareoftenthesamepeoplePossibilityofunconsciousbiasinassessingoutcomeisdifficulttoruleoutDecisionsaboutconcomitant/compensatorytreatmentareoftenmadebysomeonewhoknowsthetreatmentassignment“Compensatory”treatmentmaybegivenmoreoftentopatientsontheprotocolarmperceivedtobelesseffectiveWhyShouldInvestigatorsbeBl50CanBlindingAlwaysbeDone?Insomestudiesitmaybeimpossible(orunethical)toblindatreatmentmayhavecharacteristicsideeffectsitmaybedifficulttoblindthephysicianinasurgeryordevicestudySourcesofbiasinanun-blindedstudymustbeconsideredCanBlindingAlwaysbeDone?In51GeneralStudyDesignsManyclinicaltrialstudydesignsfallintothecategoriesofparallelgroup,dose-ranging,cross-overandfactorialdesignsTherearemanyotherpossibledesignsandvariationsonthesedesignsWewillconsiderthegeneralcasesGeneralStudyDesignsManyclin52GeneralStudyDesignsParallelgroupdesignsGeneralStudyDesignsParallel53GeneralStudyDesignsDose-RangingStudiesGeneralStudyDesignsDose-Rang54GeneralStudyDesignsCross-OverDesignsGeneralStudyDesignsCross-Ove55GeneralStudyDesignsFactorialDesignsGeneralStudyDesignsFactorial56Cross-OverDesignsSubjectsarerandomizedtosequencesoftreatments(AthenBorBthenA)Usesthepatientashis/herowncontrolOftena“wash-out”period(timebetweentreatmentperiods)isusedtoavoida“carryover”effect(theeffectoftreatmentinthefirstperiodaffectingoutcomesinthesecondperiod)Canhave
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年遵義職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)考試備考試題帶答案解析
- 2026年無錫城市職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測試備考題庫有答案解析
- 2025年中學(xué)教師資格考試《綜合素質(zhì)》教學(xué)反思與總結(jié)能力測試試題卷含答案
- 2026年重慶水利電力職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)筆試參考題庫帶答案解析
- 2025年詩詞大會題庫全文及答案
- 建筑工程2025年質(zhì)量員考試試題及答案
- 甘肅武威市涼州區(qū)2026屆英語高三上期末教學(xué)質(zhì)量檢測試題含解析
- 2026屆山西省長治市屯留縣第一中學(xué)生物高二上期末質(zhì)量跟蹤監(jiān)視模擬試題含解析
- 2026年華東政法大學(xué)高職單招職業(yè)適應(yīng)性測試參考題庫有答案解析
- 2026年廈門醫(yī)學(xué)院單招綜合素質(zhì)考試模擬試題帶答案解析
- 2025-2026學(xué)年人教版八年級上冊道德與法治期末試卷(含答案和解析)
- 2026貴州鹽業(yè)集團秋招面筆試題及答案
- 安全技術(shù)與管理畢業(yè)論文
- 溫嶺市恩力天金屬表面處理有限公司年處理10萬噸磷化金屬表面技改項目環(huán)評報告
- 職務(wù)侵占罪法律培訓(xùn)
- 【2025版】人教版(PEP)三年級下冊英語教學(xué)工作計劃(及進度表)
- JJF 1183-2025 溫度變送器校準規(guī)范
- 2024“五史”全文課件
- 人教版七年級數(shù)學(xué)上冊期末試題及參考答案(偏難)
- 關(guān)節(jié)攣縮的治療及預(yù)防
- 2024能源企業(yè)可持續(xù)發(fā)展(ESG)披露指標體系和評價導(dǎo)則
評論
0/150
提交評論