2023屆河南省開封市蘭考縣等五縣聯(lián)考數(shù)學高一上期末調研試題含解析_第1頁
2023屆河南省開封市蘭考縣等五縣聯(lián)考數(shù)學高一上期末調研試題含解析_第2頁
2023屆河南省開封市蘭考縣等五縣聯(lián)考數(shù)學高一上期末調研試題含解析_第3頁
2023屆河南省開封市蘭考縣等五縣聯(lián)考數(shù)學高一上期末調研試題含解析_第4頁
2023屆河南省開封市蘭考縣等五縣聯(lián)考數(shù)學高一上期末調研試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12小題,共60分)1.函數(shù)的零點所在的一個區(qū)間是()A. B.C. D.2.下列函數(shù)中,與的奇偶性相同,且在上單調性也相同的是()A. B.C. D.3.關于,,下列敘述正確的是()A.若,則是的整數(shù)倍B.函數(shù)的圖象關于點對稱C.函數(shù)的圖象關于直線對稱D.函數(shù)在區(qū)間上為增函數(shù).4.函數(shù)的大致圖象是A. B.C. D.5.直線L將圓平分,且與直線平行,則直線L的方程是A.BC.D.6.已知函數(shù),則下列選項中正確的是()A.函數(shù)是單調增函數(shù)B.函數(shù)的值域為C.函數(shù)為偶函數(shù)D.函數(shù)的定義域為7.將一個直角三角形繞其一直角邊所在直線旋轉一周,所得的幾何體為()A.一個圓臺 B.兩個圓錐C.一個圓柱 D.一個圓錐8.下列函數(shù)在其定義域上既是奇函數(shù)又是減函數(shù)的是A. B.C. D.9.下列函數(shù)中,周期為的是()A. B.C. D.10.已知正弦函數(shù)f(x)的圖像過點,則的值為()A.2 B.C. D.111.已知“”是“”的充分不必要條件,則k的取值范圍為()A. B.C. D.12.設全集,,,則如圖陰影部分表示的集合為()A. B.C. D.二、填空題(本大題共4小題,共20分)13.已知向量,寫出一個與共線的非零向量的坐標__________.14.16/17世紀之交,隨著天文、航海、工程、貿易以及軍事的發(fā)展,改進數(shù)字計算方法成了當務之急,約翰納皮爾正是在研究天文學的過程中,為了簡化其中的計算而發(fā)明了對數(shù).后來天才數(shù)學家歐拉發(fā)現(xiàn)了對數(shù)與指數(shù)的關系,即.現(xiàn)在已知,,則__________.15.給出下列命題“①設表示不超過的最大整數(shù),則;②定義:若任意,總有,就稱集合為的“閉集”,已知且為的“閉集”,則這樣的集合共有7個;③已知函數(shù)為奇函數(shù),在區(qū)間上有最大值5,那么在上有最小值.其中正確的命題序號是_________.16.已知,則__________.三、解答題(本大題共6小題,共70分)17.已知函數(shù).(1)若,求的解集;(2)若為銳角,且,求的值.18.2018年8月31日,全國人大會議通過了個人所得稅法的修訂辦法,將每年個稅免征額由42000元提高到60000元.2019年1月1日起實施新年征收個稅.表1個人所得稅稅率表(執(zhí)行至2018年12月31日)級數(shù)全年應納稅所得額所在區(qū)間(對應免征額為42000)稅率(%)速算扣除數(shù)13021012603206660425X5303306063566060745162060表2個人所得稅稅率表(2019年1月1日起執(zhí)行)級數(shù)全年應納稅所得額所在區(qū)間(對應免征額60000)稅率(%)速算扣除數(shù)130210252032016920425319205305292063585920745181920(1)小王在某高新技術企業(yè)工作,全年稅前收入為180000元.執(zhí)行新稅法后,小王比原來每年少交多少個人所得稅?(2)有一種速算個稅的辦法:個稅稅額=應納稅所得額×稅率-速算扣除數(shù).①請計算表1中的數(shù)X;②假若某人2021年稅后所得為200000元時,請按照這一算法計算他的稅前全年應納稅所得額.19.如圖,四棱錐的底面為矩形,,.(1)證明:平面平面.(2)若,,,求點到平面的距離.20.如圖,在正方體ABCD-A1B1C1D1中,E、F、G分別是CB、CD、CC1的中點(Ⅰ)求證:平面AB1D1∥平面EFG;(Ⅱ)A1C⊥平面EFG21.已知函數(shù)的圖象在定義域(0,+∞)上連續(xù)不斷,若存在常數(shù)T>0,使得對于任意的x>0,恒成立,稱函數(shù)滿足性質P(T).(1)若滿足性質P(2),且,求的值;(2)若,試說明至少存在兩個不等的正數(shù)T1、T2,同時使得函數(shù)滿足性質P(T1)和P(T2);(3)若函數(shù)滿足性質P(T),求證:函數(shù)存在零點.22.設,且.(1)求a的值及的定義域;(2)求在區(qū)間上的值域.

參考答案一、選擇題(本大題共12小題,共60分)1、B【解析】判斷函數(shù)的單調性,再借助零點存在性定理判斷作答.【詳解】函數(shù)在R上單調遞增,而,,所以函數(shù)的零點所在區(qū)間為.故選:B2、C【解析】先求得函數(shù)的奇偶性和單調性,結合選項,利用函數(shù)的性質和單調性的定義,逐項判定,即可求解.【詳解】由題意,函數(shù)滿足,所以函數(shù)為偶函數(shù),當時,可得,結合指數(shù)函數(shù)的性質,可得函數(shù)為單調遞增函數(shù),對于A中,函數(shù)為奇函數(shù),不符合題意;對于B中,函數(shù)為非奇非偶函數(shù)函數(shù),不符合題意;對于C中,函數(shù)的定義域為,且滿足,所以函數(shù)為偶函數(shù),設,且時,則,因為且,所以,所以,即,所以在為增函數(shù),符合題意;對于D中,函數(shù)為非奇非偶函數(shù)函數(shù),不符合題意.故選:C.3、B【解析】由題意利用余弦函數(shù)的圖象和性質,逐一判斷各個結論是否正確,從而得出結論.【詳解】對于A,的周期為,若,則是的整數(shù)倍,故A錯誤;對于B,當時,,則函數(shù)的圖象關于點中心對稱,B正確;對于C,當時,,不是函數(shù)最值,函數(shù)的圖象不關于直線對稱,C錯誤;對于D,,,則不單調,D錯誤故選:B.4、D【解析】關于對稱,且時,,故選D5、C【解析】圓的圓心坐標,直線L將圓平分,所以直線L過圓的圓心,又因為與直線平行,所以可設直線L的方程為,將代入可得所以直線L的方程為即,所以選C考點:求直線方程6、D【解析】應用換元法求的解析式,進而求其定義域、值域,并判斷單調性、奇偶性,即可知正確選項.【詳解】由題意,由,則,即.令,則∴,其定義域為不是偶函數(shù),又故不單調增函數(shù),易得,則,∴.故選:D7、D【解析】依題意可知,這是一個圓錐.8、A【解析】選項是非奇非偶函數(shù),選項是奇函數(shù)但在定義域的每個區(qū)間上是減函數(shù),不能說是定義域上的減函數(shù),故符合題意.9、C【解析】對于A、B:直接求出周期;對于C:先用二倍角公式化簡,再求其周期;對于D:不是周期函數(shù),即可判斷.【詳解】對于A:的周期為,故A錯誤;對于B:的周期為,故B錯誤;對于C:,所以其周期為,故C正確;對于D:不是周期函數(shù),沒有最小正周期,故D錯誤.故選:C10、C【解析】由題意結合誘導公式有:.本題選擇C選項.11、C【解析】根據(jù)“”是“”的充分不必要條件,可知是解集的真子集,然后根據(jù)真子集關系求解出的取值范圍.【詳解】因為,所以或,所以解集為,又因為“”是“”的充分不必要條件,所以是的真子集,所以,故選:C.【點睛】結論點睛:一般可根據(jù)如下規(guī)則判斷充分、必要條件:(1)若是的必要不充分條件,則對應集合是對應集合的真子集;(2)若是的充分不必要條件,則對應集合是對應集合的真子集;(3)若是的充分必要條件,則對應集合與對應集合相等;(4)若是的既不充分也不必要條件,則對應集合與對應集合互不包含.12、D【解析】解出集合、,然后利用圖中陰影部分所表示的集合的含義得出結果.【詳解】,.圖中陰影部分所表示的集合為且.故選:D.【點睛】本題考查韋恩圖表示的集合的求解,同時也考查了一元二次不等式的解法,解題的關鍵就是弄清楚陰影部分所表示的集合的含義,考查運算求解能力,屬于基礎題.二、填空題(本大題共4小題,共20分)13、(縱坐標為橫坐標2倍即可,答案不唯一)【解析】向量與共線的非零向量的坐標縱坐標為橫坐標2倍,例如(2,4)故答案為14、2【解析】先根據(jù)要求將指數(shù)式轉為對數(shù)式,作乘積運算時注意使用換底公式去計算.【詳解】∵,∴,∴故答案為2【點睛】底數(shù)不同的兩個對數(shù)式進行運算時,有時可以利用換底公式:將其轉化為同底數(shù)的對數(shù)式進行運算.15、①②【解析】對于①,如果,則,也就是,所以,進一步計算可以得到該和為,故①正確;對于②,我們把分成四組:,由題設可知不是“閉集”中的元素,其余三組元素中的每組元素必定在“閉集”中同時出現(xiàn)或同時不出現(xiàn),故所求的“閉集”的個數(shù)為,故②正確;對于③,因為在上的最大值為,故在上的最大值為,所以在上的最小值為,在上的最小值為,故③錯.綜上,填①②點睛:(1)根據(jù)可以得到,因此,這樣的共有,它們的和為,依據(jù)這個規(guī)律可以寫出和并計算該和(2)根據(jù)閉集的要求,中每組元素都是同時出現(xiàn)在閉集中或者同時不出現(xiàn)在閉集中,故可以根據(jù)子集的個數(shù)公式來計算(3)注意把非奇非偶函數(shù)轉化為奇函數(shù)或偶函數(shù)來討論16、##【解析】首先根據(jù)同角三角函數(shù)的基本關系求出,再利用二倍角公式及同角三角函數(shù)的基本關系將弦化切,最后代入計算可得;【詳解】解:因為,所以,所以故答案為:三、解答題(本大題共6小題,共70分)17、(1)(2)【解析】(1)利用三角恒等變換,將函數(shù)轉化為,由求解;(2)由得到,再由,利用二倍角公式求解.【小問1詳解】解:,,,由,得,即,又,故的解集為.【小問2詳解】由,得,因為為銳角,所以,則,故,,.18、(1)小王比原來每年少交12960元個人所得稅(2)①;②他的稅前全年應納稅所得額為153850元【解析】(1)分別按舊稅率和新稅率計算所納稅款,比較即可求解;(2)根據(jù)速算法則求出X即可,由速算法則計算稅后200000元時稅前收入即可.【小問1詳解】由于小王的全年稅前收入為180000元,按照舊稅率,小王的個人所得稅為:元按照新稅率,小王的個人所得稅為:元且元,小王比原來每年少交12960元個人所得稅.【小問2詳解】①按照表1,假設個人全年應納稅所得額為x元,可得:,.②按照表2中,級數(shù)3,;按照級數(shù)2,;顯然,所以應該參照“級數(shù)3”計算.假設他的全年應納稅所得額為t元,所以此時,解得,即他的稅前全年應納稅所得額為153850元.19、(1)證明見解析;(2).【解析】(1)連接,交于點,連接,證明平面,即可證明出平面平面.(2)用等體積法,即,即可求出答案.【小問1詳解】連接,交于點,連接,如圖所示,底面為矩形,為,的中點,又,,,,又,平面,平面,平面平面【小問2詳解】,,,,在中,,,在中,,在中,,,,,,設點到平面的距離為,由等體積法可知,又平面,為點到平面的距離,,,即點到平面的距離為20、(Ⅰ)見解析;(Ⅱ)見解析.【解析】(Ⅰ)連接,推導出四邊形是平行四邊形,從而.再證出,.從而平面,同理平面,由此能證明平面平面(Ⅱ)推導出,,從而平面,,同理,由此能證明平面AB1D1,從而平面【詳解】(Ⅰ)連接BC1,∵正方體ABCD-A1B1C1D1中,AB∥C1D1,AB=C1D1,∴四邊形ABC1D1是平行四邊形,∴AD1∥BC1.又∵E,G分別是BC,CC1的中點,∴EG∥BC1,∴EG∥AD1.又∵EG?平面AB1D1,AD1?平面AB1D1,∴EG∥平面AB1D1.同理EF∥平面AB1D1,且EG∩EF=E,EG?平面EFG,EF?平面EFG,∴平面AB1D1∥平面EFG.

(Ⅱ)∵AB1D1正方體ABCD-A1B1C1D1中,AB1⊥A1B.又∵正方體ABCD-A1B1C1D1中,BC⊥平面AA1B1B,∴AB1⊥BC.又∵A1B與BC都在平面A1BC中,A1B與BC相交于點B,∴AB1⊥平面A1BC,∴A1C⊥AB1同理A1C⊥AD1,而AB1與AD1都在平面AB1D1中,AB1與AD1相交于點A,∴A1C⊥平面AB1D1,因此,A1C⊥平面EFG【點睛】本題考查面面平行、線面垂直的證明,考查空間中線線、線面、面面間的位置關系,考查運算求解能力,考查空間思維能力,是中檔題21、(1)0;(2)證明見解析;(3)證明見解析.【解析】(1)由滿足性質可得恒成立,取可求,取可求,由此可求的值;(2)設滿足,利用零點存在定理證明關于的方程至少有兩個解,證明至少存在兩個不等的正數(shù),同時使得函數(shù)滿足性質和;(3)分別討論,,時函數(shù)的零點的存在性,由此完成證明.【小問1詳解】因為滿足性質,所以對于任意的x,恒成立.又因為,所以,,由可得,所以,;【小問2詳解】若正數(shù)滿足,等價于,記,顯然,,因為,所以,,即.因為的圖像連續(xù)不斷,所以存,使得,因此,至少存在兩個不等的正數(shù),使得函數(shù)同時滿足性質和.【小問3詳解】若,則1即為零點;因為,若,則,矛盾,故,若,則,,,可得.取即可使得,又因為的圖像連續(xù)不斷,所以,當時,函數(shù)在上存在零點,當時,函數(shù)在上存在零點,若,則由,可得,由,可得,由,可得.取即可使得,又因為的圖像連續(xù)不斷,所以,當時,函數(shù)在上存在零點,當時,函數(shù)在上存在零點,綜上,函數(shù)存在零點.【點睛】“新定義”主要是指即時定義新概念、新公式、新定理、新法則、新運算五種,然后根據(jù)此新定義去解決問題,有時還需要用類比的方法去理解新的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論