版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.已知函數(shù),下列含有函數(shù)零點的區(qū)間是()A. B.C. D.2.下列函數(shù)在定義域內既是奇函數(shù),又是減函數(shù)的是()A. B.C. D.3.已知,,,則下列判斷正確的是()A. B.C. D.4.下列圖象是函數(shù)圖象的是A. B.C. D.5.若和都是定義在上的奇函數(shù),則()A.0 B.1C.2 D.36.下列函數(shù)中是增函數(shù)的為()A. B.C. D.7.下表是某次測量中兩個變量的一組數(shù)據(jù),若將表示為關于的函數(shù),則最可能的函數(shù)模型是234567890.631.011.261.461.631.771.891.99A.一次函數(shù)模型 B.二次函數(shù)模型C.指數(shù)函數(shù)模型 D.對數(shù)函數(shù)模型8.已知集合A={t2+s2|t,s∈Z},且x∈A,y∈A,則下列結論正確的是Ax+y∈AB.x-y∈AC.xy∈AD.9.方程的所有實數(shù)根組成的集合為()A. B.C. D.10.已知函數(shù),若方程f(x)=a有四個不同的解x1,x2,x3,x4,且x1<x2<x3<x4,則的取值范圍為()A.(﹣1,+∞) B.(﹣1,1]C.(﹣∞,1) D.[﹣1,1)二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.已知且,函數(shù)的圖像恒過定點,若在冪函數(shù)的圖像上,則__________12.將函數(shù)的圖象向左平移個單位長度得到函數(shù)的圖象,若使得,且的最小值為,則_________.13.設函數(shù),若,則的取值范圍是________.14.若在上恒成立,則k的取值范圍是______.15.已知平面和直線,給出條件:①;②;③;④;⑤(1)當滿足條件_________時,有;(2)當滿足條件________時,有.(填所選條件的序號)三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.如圖,等腰梯形ABCD中,,角,,,F(xiàn)在線段BC上運動,過F且垂直于線段BC的直線l將梯形ABCD分為左、右兩個部分,設左邊部分含點B的部分面積為y分別求當與時y的值;設,試寫出y關于x的函數(shù)解析17.求下列函數(shù)的值域(1)(2)18.如圖,在同一平面上,已知等腰直角三角形紙片的腰長為3,正方形紙片的邊長為1,其中B、C、D三點在同一水平線上依次排列.把正方形紙片向左平移a個單位,.設兩張紙片重疊部分的面積為S.(1)求關于a的函數(shù)解析式;(2)若,求a的值.19.已知集合,.(1)若,求;(2)若“”是“”的充分不必要條件,求實數(shù)a的取值范圍.20.已知集合且和集合(Ⅰ)求;(Ⅱ)若全集,集合,且,求a的取值范圍21.已知函數(shù),其中,再從條件①、條件②、條件③這三個條件中選擇兩個作為已知.條件①:;條件②:的最小正周期為;條件③:的圖象經過點(1)求的解析式;(2)求的單調遞增區(qū)間
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、C【解析】利用零點存性定理即可求解.【詳解】解析:因為函數(shù)單調遞增,且,,,,.且所以含有函數(shù)零點的區(qū)間為.故選:C2、D【解析】利用常見函數(shù)的奇偶性和單調性逐一判斷即可.【詳解】對于A,,是偶函數(shù),不滿足題意對于B,是奇函數(shù),但不是減函數(shù),不滿足題意對于C,,是奇函數(shù),因為是增函數(shù),是減函數(shù),所以是增函數(shù),不滿足題意對于D,是奇函數(shù)且是減函數(shù),滿足題意故選:D3、C【解析】對數(shù)函數(shù)的單調性可比較、與的大小關系,由此可得出結論.【詳解】,即.故選:C.4、D【解析】由題意結合函數(shù)的定義確定所給圖象是否是函數(shù)圖象即可.【詳解】由函數(shù)的定義可知,函數(shù)的每一個自變量對應唯一的函數(shù)值,選項A,B中,當時,一個自變量對應兩個函數(shù)值,不合題意,選項C中,當時,一個自變量對應兩個函數(shù)值,不合題意,只有選項D符合題意.本題選擇D選項.【點睛】本題主要考查函數(shù)的定義及其應用,屬于基礎題.5、A【解析】根據(jù)題意可知是周期為的周期函數(shù),以及,,由此即可求出結果.【詳解】因為和都是定義在上的奇函數(shù),所以,,所以,所以,所以是周期為周期函數(shù),所以因為是定義在上的奇函數(shù),所以,又是定義在上的奇函數(shù),所以,所以,即,所以.故選:A.6、D【解析】根據(jù)基本初等函數(shù)的性質逐項判斷后可得正確的選項.【詳解】對于A,為上的減函數(shù),不合題意,舍.對于B,為上的減函數(shù),不合題意,舍.對于C,在為減函數(shù),不合題意,舍.對于D,為上的增函數(shù),符合題意,故選:D.7、D【解析】對于,由于均勻增加,而值不是均勻遞增,不是一次函數(shù)模型;對于,由于該函數(shù)是單調遞增,不是二次函數(shù)模型;對于,過不是指數(shù)函數(shù)模型,故選D.8、C【解析】∵集合A={t2+s2∣∣t,s∈Z},∴1∈A,2∈A,1+2=3?A,故A“x+y∈A”錯誤;又∵1?2=?1?A,故B“x?y∈A”錯誤;又∵,故D“∈A”錯誤;對于C,由,設,且.則.且,所以.故選C.9、C【解析】首先求出方程的解,再根據(jù)集合的表示方法判斷即可;【詳解】解:由,解得或,所以方程的所有實數(shù)根組成的集合為;故選:C10、B【解析】由方程f(x)=a,得到x1,x2關于x=﹣1對稱,且x3x4=1;化簡,利用數(shù)形結合進行求解即可【詳解】作函數(shù)f(x)的圖象如圖所示,∵方程f(x)=a有四個不同的解x1,x2,x3,x4,且x1<x2<x3<x4,∴x1,x2關于x=﹣1對稱,即x1+x2=﹣2,0<x3<1<x4,則|log2x3|=|log2x4|,即﹣log2x3=log2x4,則log2x3+log2x4=0,即log2x3x4=0,則x3x4=1;當|log2x|=1得x=2或,則1<x4≤2;≤x3<1;故;則函數(shù)y=﹣2x3+,在≤x3<1上為減函數(shù),則故當x3=取得y取最大值y=1,當x3=1時,函數(shù)值y=﹣1.即函數(shù)取值范圍(﹣1,1]故選B【點睛】本題考查分段函數(shù)的運用,主要考查函數(shù)的單調性的運用,運用數(shù)形結合的思想方法是解題的關鍵,屬于中檔題二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、【解析】由題意得12、【解析】根據(jù)三角函數(shù)的圖形變換,求得,根據(jù),不妨設,求得,,得到則,根據(jù)題意得到,即可求解.【詳解】將函數(shù)的圖象向左平移個單位長度,可得,又由,不妨設,由,解得,即,又由,解得,即則,因為的最小值為,可得,解得或,因為,所以.故答案為:13、【解析】當時,由,求得x0的范圍;當x0<2時,由,求得x0的取值范圍,再把這兩個x0的取值范圍取并集,即為所求.【詳解】當時,由,求得x0>3;當x0<2時,由,解得:x0<-1.綜上所述:x0的取值范圍是.故答案為:14、【解析】首先參變分離得到在上恒成立,接著分段求出函數(shù)的最小值,最后給出k的取值范圍即可.【詳解】因為在上恒成立,所以在上恒成立,當時,,所以,所以,所以;當時,,所以,所以,所以;綜上:k的取值范圍為.故答案為:.【點睛】本題是含參數(shù)的不等式恒成立問題,此類問題都可轉化為最值問題,即f(x)<a恒成立?a>f(x)max,f(x)>a恒成立?a<f(x)min.15、(1).③⑤;(2).②⑤【解析】若m?α,α∥β,則m∥β;若m⊥α,α∥β,則m⊥β故答案為(1)③⑤(2)②⑤考點:本題主要考查直線與平面垂直的位置關系點評:熟練掌握直線與平面平行、垂直的判定與性質,基礎題三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1)當時,,當時,;(2).【解析】過A作,M為垂足,過D作,N為垂足,則,由此能求出y的值;設,當時,,當時,;當時,由此能求出y關于x的函數(shù)解析【詳解】如圖,過A作,M為垂足,過D作,N為垂足,則,當時,,當時,設,當時,,當時,;當時,.【點睛】本題考查函數(shù)值、函數(shù)解析式的求法,考查函數(shù)性質、三角形及矩形形面積公式等基礎知識,考查運算求解能力,考查數(shù)形結合思想,是中檔題.17、(1)(2)【解析】(1)由,可得,從而得出值域;(2)令將原函數(shù)轉化為關于的二次函數(shù),再求值域即可.【詳解】(1)值域為(2)設當時y取最小值當時y取最大值所以其值域為【點睛】本題主要考查的是三角函數(shù)最值,主要用型和換元后轉換成二次函數(shù)求最值,考查學生的分析問題,解決問題的能力,是基礎題.18、(1);(2)或.【解析】(1)討論、、分別求對應的,進而寫出函數(shù)解析式的分段形式.(2)根據(jù)(1)所得解析式,將代入求a值即可.【小問1詳解】如下圖,延長到上的,又,則,∴,當時,;當時,;當時,.綜上,.小問2詳解】由(1)知:在上,;在上,,整理得,解得(舍)或.綜上,或時,.19、(1)(2),【解析】(1)時,求出集合,,由此能求出;(2)推導出,求出集合,列出不等式能,能求出實數(shù)的取值范圍【小問1詳解】時,集合,;【小問2詳解】若“”是“”的充分不必要條件,則,集合,,解得,實數(shù)的取值范圍是,20、(Ⅰ);(Ⅱ).【解析】Ⅰ由函數(shù)的定義域及值域的求法得,,可求Ⅱ先求解C,再由集合的補集的運算及集合間的包含關系得,解得【詳解】Ⅰ由,,得,即,解不等式,得,即,所以,Ⅱ解不等式得:,即,又,又,所以,解得:,【點睛】本題考查了函數(shù)的定義域及值域的求法,考查了集合的交集、補集的運算及集合間的包含關系,屬于簡單題21、(1)條件選擇見解析,;(2)單調遞增區(qū)間為,.【解析】(1)利用三角恒等變換化簡得出.選擇①②:由可求得的值,由正弦型函數(shù)的周期公式可求得的值,可得出函數(shù)的解析式;選擇
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026屆山東省濱州市惠民縣數(shù)學高一上期末聯(lián)考試題含解析
- 內兒科護理培訓課件講解
- 獸藥飼料培訓班課件
- 私人口腔會計管理制度(3篇)
- 診療組長管理制度及流程(3篇)
- 金融國慶活動策劃方案(3篇)
- 防藥品誤食管理制度(3篇)
- 食品車間環(huán)保管理制度(3篇)
- 中學校園文化建設制度
- 養(yǎng)老院收費標準及退費制度
- 廣西出版?zhèn)髅郊瘓F有限公司2026年招聘備考題庫附答案詳解
- 陶瓷工藝品彩繪師改進水平考核試卷含答案
- 2025廣東百萬英才匯南粵惠州市市直事業(yè)單位招聘急需緊缺人才31人(公共基礎知識)測試題附答案
- 粉塵防護知識課件
- 2026年孝昌縣供水有限公司公開招聘正式員工備考題庫及完整答案詳解一套
- (2025年)糧食和物資儲備局招聘考試題庫(答案+解析)
- 2026年樂陵市市屬國有企業(yè)公開招聘工作人員6名備考題庫及答案詳解一套
- 2026年日歷表含農歷(2026年12個月日歷-每月一張A4可打?。?/a>
- GB 30981-2020 工業(yè)防護涂料中有害物質限量
- 鋼結構廠房布置及設備
- 畢業(yè)設計(論文)-全自動果蔬切丁機設計(含全套CAD圖紙)
評論
0/150
提交評論