2023學(xué)年龍巖市重點中學(xué)高考數(shù)學(xué)必刷試卷(含答案解析)_第1頁
2023學(xué)年龍巖市重點中學(xué)高考數(shù)學(xué)必刷試卷(含答案解析)_第2頁
2023學(xué)年龍巖市重點中學(xué)高考數(shù)學(xué)必刷試卷(含答案解析)_第3頁
免費預(yù)覽已結(jié)束,剩余16頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.把函數(shù)的圖象向右平移個單位,得到函數(shù)的圖象.給出下列四個命題①的值域為②的一個對稱軸是③的一個對稱中心是④存在兩條互相垂直的切線其中正確的命題個數(shù)是()A.1 B.2 C.3 D.42.已知函數(shù),給出下列四個結(jié)論:①函數(shù)的值域是;②函數(shù)為奇函數(shù);③函數(shù)在區(qū)間單調(diào)遞減;④若對任意,都有成立,則的最小值為;其中正確結(jié)論的個數(shù)是()A. B. C. D.3.已知拋物線的焦點為,過點的直線與拋物線交于,兩點(設(shè)點位于第一象限),過點,分別作拋物線的準線的垂線,垂足分別為點,,拋物線的準線交軸于點,若,則直線的斜率為A.1 B. C. D.4.已知命題,;命題若,則,下列命題為真命題的是()A. B. C. D.5.公差不為零的等差數(shù)列{an}中,a1+a2+a5=13,且a1、a2、a5成等比數(shù)列,則數(shù)列{an}的公差等于()A.1 B.2 C.3 D.46.設(shè)向量,滿足,,,則的取值范圍是A. B.C. D.7.函數(shù)的圖象大致為()A. B.C. D.8.已知實數(shù),滿足,則的最大值等于()A.2 B. C.4 D.89.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈[﹣3,﹣2]時,f(x)=﹣x﹣2,則()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)10.如圖網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某幾何體的三視圖,則該幾何體的所有棱中最長棱的長度為()A. B. C. D.11.復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點為則()A. B. C. D.12.若a>b>0,0<c<1,則A.logac<logbc B.logca<logcb C.a(chǎn)c<bc D.ca>cb二、填空題:本題共4小題,每小題5分,共20分。13.如圖是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設(shè),,則的面積為________.14.(5分)已知函數(shù),則不等式的解集為____________.15.已知,,其中,為正的常數(shù),且,則的值為_______.16.已知,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程是,直線和直線的極坐標方程分別是()和(),其中().(1)寫出曲線的直角坐標方程;(2)設(shè)直線和直線分別與曲線交于除極點的另外點,,求的面積最小值.18.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),以坐標原點為極點,軸的正半軸為極軸,取相同長度單位建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的普通方程;(2)設(shè)射線與曲線交于不同于極點的點,與曲線交于不同于極點的點,求線段的長.19.(12分)某地在每周六的晚上8點到10點半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時刻亮燈的概率均為,并且是否亮燈彼此相互獨立.現(xiàn)統(tǒng)計了其中100盞燈在一場燈光展中亮燈的時長(單位:),得到下面的頻數(shù)表:亮燈時長/頻數(shù)1020402010以樣本中100盞燈的平均亮燈時長作為一盞燈的亮燈時長.(1)試估計的值;(2)設(shè)表示這10000盞燈在某一時刻亮燈的數(shù)目.①求的數(shù)學(xué)期望和方差;②若隨機變量滿足,則認為.假設(shè)當(dāng)時,燈光展處于最佳燈光亮度.試由此估計,在一場燈光展中,處于最佳燈光亮度的時長(結(jié)果保留為整數(shù)).附:①某盞燈在某一時刻亮燈的概率等于亮燈時長與燈光展總時長的商;②若,則,,.20.(12分)已知圓,定點,為平面內(nèi)一動點,以線段為直徑的圓內(nèi)切于圓,設(shè)動點的軌跡為曲線(1)求曲線的方程(2)過點的直線與交于兩點,已知點,直線分別與直線交于兩點,線段的中點是否在定直線上,若存在,求出該直線方程;若不是,說明理由.21.(12分)已知函數(shù)f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)當(dāng)x>0時,若函數(shù)g(x)(a>0)的最小值恒大于f(x),求實數(shù)a的取值范圍.22.(10分)已知直線與橢圓恰有一個公共點,與圓相交于兩點.(I)求與的關(guān)系式;(II)點與點關(guān)于坐標原點對稱.若當(dāng)時,的面積取到最大值,求橢圓的離心率.

2023學(xué)年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【答案解析】

由圖象變換的原則可得,由可求得值域;利用代入檢驗法判斷②③;對求導(dǎo),并得到導(dǎo)函數(shù)的值域,即可判斷④.【題目詳解】由題,,則向右平移個單位可得,,的值域為,①錯誤;當(dāng)時,,所以是函數(shù)的一條對稱軸,②正確;當(dāng)時,,所以的一個對稱中心是,③正確;,則,使得,則在和處的切線互相垂直,④正確.即②③④正確,共3個.故選:C【答案點睛】本題考查三角函數(shù)的圖像變換,考查代入檢驗法判斷余弦型函數(shù)的對稱軸和對稱中心,考查導(dǎo)函數(shù)的幾何意義的應(yīng)用.2.C【答案解析】

化的解析式為可判斷①,求出的解析式可判斷②,由得,結(jié)合正弦函數(shù)得圖象即可判斷③,由得可判斷④.【題目詳解】由題意,,所以,故①正確;為偶函數(shù),故②錯誤;當(dāng)時,,單調(diào)遞減,故③正確;若對任意,都有成立,則為最小值點,為最大值點,則的最小值為,故④正確.故選:C.【答案點睛】本題考查三角函數(shù)的綜合運用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問題.3.C【答案解析】

根據(jù)拋物線定義,可得,,又,所以,所以,設(shè),則,則,所以,所以直線的斜率.故選C.4.B【答案解析】解:命題p:?x>0,ln(x+1)>0,則命題p為真命題,則¬p為假命題;取a=﹣1,b=﹣2,a>b,但a2<b2,則命題q是假命題,則¬q是真命題.∴p∧q是假命題,p∧¬q是真命題,¬p∧q是假命題,¬p∧¬q是假命題.故選B.5.B【答案解析】

設(shè)數(shù)列的公差為.由,成等比數(shù)列,列關(guān)于的方程組,即求公差.【題目詳解】設(shè)數(shù)列的公差為,①.成等比數(shù)列,②,解①②可得.故選:.【答案點睛】本題考查等差數(shù)列基本量的計算,屬于基礎(chǔ)題.6.B【答案解析】

由模長公式求解即可.【題目詳解】,當(dāng)時取等號,所以本題答案為B.【答案點睛】本題考查向量的數(shù)量積,考查模長公式,準確計算是關(guān)鍵,是基礎(chǔ)題.7.A【答案解析】

確定函數(shù)在定義域內(nèi)的單調(diào)性,計算時的函數(shù)值可排除三個選項.【題目詳解】時,函數(shù)為減函數(shù),排除B,時,函數(shù)也是減函數(shù),排除D,又時,,排除C,只有A可滿足.故選:A.【答案點睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過解析式研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等等排除,可通過特殊的函數(shù)值,函數(shù)值的正負,函數(shù)值的變化趨勢排除,最后剩下的一個即為正確選項.8.D【答案解析】

畫出可行域,計算出原點到可行域上的點的最大距離,由此求得的最大值.【題目詳解】畫出可行域如下圖所示,其中,由于,,所以,所以原點到可行域上的點的最大距離為.所以的最大值為.故選:D【答案點睛】本小題主要考查根據(jù)可行域求非線性目標函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.9.B【答案解析】

根據(jù)函數(shù)的周期性以及x∈[﹣3,﹣2]的解析式,可作出函數(shù)f(x)在定義域上的圖象,由此結(jié)合選項判斷即可.【題目詳解】由f(x+2)=f(x),得f(x)是周期函數(shù)且周期為2,先作出f(x)在x∈[﹣3,﹣2]時的圖象,然后根據(jù)周期為2依次平移,并結(jié)合f(x)是偶函數(shù)作出f(x)在R上的圖象如下,選項A,,所以,選項A錯誤;選項B,因為,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),選項B正確;選項C,,所以,即,選項C錯誤;選項D,,選項D錯誤.故選:B.【答案點睛】本題考查函數(shù)性質(zhì)的綜合運用,考查函數(shù)值的大小比較,考查數(shù)形結(jié)合思想,屬于中檔題.10.C【答案解析】

利用正方體將三視圖還原,觀察可得最長棱為AD,算出長度.【題目詳解】幾何體的直觀圖如圖所示,易得最長的棱長為故選:C.【答案點睛】本題考查了三視圖還原幾何體的問題,其中利用正方體作襯托是關(guān)鍵,屬于基礎(chǔ)題.11.B【答案解析】

求得復(fù)數(shù),結(jié)合復(fù)數(shù)除法運算,求得的值.【題目詳解】易知,則.故選:B【答案點睛】本小題主要考查復(fù)數(shù)及其坐標的對應(yīng),考查復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.12.B【答案解析】試題分析:對于選項A,,,,而,所以,但不能確定的正負,所以它們的大小不能確定;對于選項B,,,兩邊同乘以一個負數(shù)改變不等號方向,所以選項B正確;對于選項C,利用在第一象限內(nèi)是增函數(shù)即可得到,所以C錯誤;對于選項D,利用在上為減函數(shù)易得,所以D錯誤.所以本題選B.【考點】指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì)【名師點睛】比較冪或?qū)?shù)值的大小,若冪的底數(shù)相同或?qū)?shù)的底數(shù)相同,通常利用指數(shù)函數(shù)或?qū)?shù)函數(shù)的單調(diào)性進行比較;若底數(shù)不同,可考慮利用中間量進行比較.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】

根據(jù)個全等的三角形,得到,設(shè),求得,利用余弦定理求得,再利用三角形的面積公式,求得三角形的面積.【題目詳解】由于三角形是由個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,所以.在三角形中,.設(shè),則.由余弦定理得,解得.所以三角形邊長為,面積為.故答案為:【答案點睛】本題考查了等邊三角形的面積計算公式、余弦定理、全等三角形的性質(zhì),考查了推理能力與計算能力,屬于中檔題.14.【答案解析】

易知函數(shù)的定義域為,且,則是上的偶函數(shù).由于在上單調(diào)遞增,而在上也單調(diào)遞增,由復(fù)合函數(shù)的單調(diào)性知在上單調(diào)遞增,又在上單調(diào)遞增,故知在上單調(diào)遞增.令,知,則不等式可化為,即,可得,又,是偶函數(shù),可得,由在上單調(diào)遞增,可得,則,解得,故不等式的解集為.15.【答案解析】

把已知等式變形,展開兩角和與差的三角函數(shù),結(jié)合已知求得值.【題目詳解】解:由,得,,即,,又,,解得:.為正的常數(shù),.故答案為:.【答案點睛】本題考查兩角和與差的三角函數(shù),考查數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.16.【答案解析】

首先利用,將其兩邊同時平方,利用同角三角函數(shù)關(guān)系式以及倍角公式得到,從而求得,利用誘導(dǎo)公式求得,得到結(jié)果.【題目詳解】因為,所以,即,所以,故答案是.【答案點睛】該題考查的是有關(guān)三角函數(shù)化簡求值問題,涉及到的知識點有同角三角函數(shù)關(guān)系式,倍角公式,誘導(dǎo)公式,屬于簡單題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)16.【答案解析】

(1)將極坐標方程化為直角坐標方程即可;(2)利用極徑的幾何意義,聯(lián)立曲線,直線,直線的極坐標方程,得出,利用三角形面積公式,結(jié)合正弦函數(shù)的性質(zhì),得出的面積最小值.【題目詳解】(1)曲線:,即化為直角坐標方程為:;(2),即同理∴當(dāng)且僅當(dāng),即()時取等號即的面積最小值為16【答案點睛】本題主要考查了極坐標方程化直角坐標方程以及極坐標的應(yīng)用,屬于中檔題.18.(1);(2)【答案解析】

曲線的參數(shù)方程轉(zhuǎn)換為直角坐標方程為.再用極直互化公式求解,曲線的極坐標方程用極直互化公式轉(zhuǎn)換為直角坐標方程.射線與曲線的極坐標方程聯(lián)解求出,射線與曲線的極坐標方程聯(lián)解求出,再用得解【題目詳解】解:曲線的參數(shù)方程為(為參數(shù),轉(zhuǎn)換為直角坐標方程為.把,代入得:曲線的極坐標方程為.轉(zhuǎn)換為直角坐標方程為.設(shè)射線與曲線交于不同于極點的點,所以,解得.與曲線交于不同于極點的點,所以,解得,所以【答案點睛】本題考查參數(shù)方程、極坐標方程直角坐標方程相互轉(zhuǎn)換及極坐標下利用和的幾何意義求線段的長.(1)直角坐標方程化為極坐標方程只需將直角坐標方程中的分別用,代替即可得到相應(yīng)極坐標方程.參數(shù)方程化為極坐標方程必須先化成直角坐標方程再轉(zhuǎn)化為極坐標方程.(2)直接求解,能達到化繁為簡的解題目的;如果幾何關(guān)系不容易通過極坐標表示時,可以先化為直角坐標方程,將不熟悉的問題轉(zhuǎn)化為熟悉的問題加以解決.19.(1)(2)①,,②72【答案解析】

(1)將每組數(shù)據(jù)的組中值乘以對應(yīng)的頻率,然后再將結(jié)果相加即可得到亮燈時長的平均數(shù),將此平均數(shù)除以(個小時),即可得到的估計值;(2)①利用二項分布的均值與方差的計算公式進行求解;②先根據(jù)條件計算出的取值范圍,然后根據(jù)并結(jié)合正態(tài)分布概率的對稱性,求解出在滿足取值范圍下對應(yīng)的概率.【題目詳解】(1)平均時間為(分鐘)∴(2)①∵,∴,②∵,,∴∵,,∴∴即最佳時間長度為72分鐘.【答案點睛】本題考查根據(jù)頻數(shù)分布表求解平均數(shù)、幾何概型(長度模型)、二項分布的均值與方差、正態(tài)分布的概率計算,屬于綜合性問題,難度一般.(1)如果,則;(2)計算正態(tài)分布中的概率,一定要活用正態(tài)分布圖象的對稱性對應(yīng)概率的對稱性.20.(1);(2)存在,.【答案解析】

(1)設(shè)以為直徑的圓心為,切點為,取關(guān)于軸的對稱點,連接,計算得到,故軌跡為橢圓,計算得到答案.(2)設(shè)直線的方程為,設(shè),聯(lián)立方程得到,,計算,得到答案.【題目詳解】(1)設(shè)以為直徑的圓心為,切點為,則,取關(guān)于軸的對稱點,連接,故,所以點的軌跡是以為焦點,長軸為4的橢圓,其中,曲線方程為.(2)設(shè)直線的方程為,設(shè),直線的方程為,同理,所以,即,聯(lián)立,所以,代入得,所以點都在定直線上.【答案點睛】本題考查了軌跡方程,定直線問題,意在考查學(xué)生的計算

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論