版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
初中數(shù)學(xué)教案設(shè)計教材分析經(jīng)歷了一段時間的教學(xué)工作,你是否有著一定的教學(xué)經(jīng)驗?快來寫一篇數(shù)學(xué)教案把,教案能對你的教學(xué)工作提供積極的幫助。#592497初中數(shù)學(xué)教案設(shè)計教材分析1理解一元二次方程求根公式的推導(dǎo)過程,了解公式法的概念,會熟練應(yīng)用公式法解一元二次方程.復(fù)習(xí)具體數(shù)字的一元二次方程配方法的解題過程,引入a*2+6乂+。=0(2/0)的求根公式的推導(dǎo),并應(yīng)用公式法解一元二次方程.重點求根公式的推導(dǎo)和公式法的應(yīng)用.難點一元二次方程求根公式的推導(dǎo).一、復(fù)習(xí)引入1.前面我們學(xué)習(xí)過解一元二次方程的“直接開平方法”,比如,方程(1)x2=4(2)(x-2)2=7提問1這種解法的(理論)依據(jù)是什么?提問2這種解法的局限性是什么?(只對那種“平方式等于非負(fù)數(shù)”的特殊二次方程有效,不能實施于一般形式的二次方程.)2.面對這種局限性,怎么辦?(使用配方法,把一般形式的二次方程配方成能夠“直接開平方”的形式.)(學(xué)生活動)用配方法解方程2x2+3=7x(老師點評)略總結(jié)用配方法解一元二次方程的步驟(學(xué)生總結(jié),老師點評).(1)先將已知方程化為一般形式;(2)化二次項系數(shù)為1;(3)常數(shù)項移到右邊;(4)方程兩邊都加上一次項系數(shù)的一半的平方,使左邊配成一個完全平方式;(5)變形為(x+p)2=q的形式,如果qN0,方程的根是x二-p土q;如果q<0,方程無實根.二、探索新知用配方法解方程:(1)ax2-7x+3=0(2)ax2+bx+3=0如果這個一元二次方程是一般形式ax2+bx+c=0(a/0),你能否用上面配方法的步驟求出它們的兩根,請同學(xué)獨立完成下面這個問題.問題:已知ax2+bx+c=0(a/0),試推導(dǎo)它的兩個根x1二—b+b2-4ac2a,x2二-b-b2-4ac2a(這個方程一定有解嗎?什么情況下有解?)分析:因為前面具體數(shù)字已做得很多,我們現(xiàn)在不妨把a,b,c也當(dāng)成一個具體數(shù)字,根據(jù)上面的解題步驟就可以一直推下去.解:移項,得:ax2+bx=-c二次項系數(shù)化為1,得x2+bax=-ca配方,得:x2+bax+(b2a)2=-ca+(b2a)2即(x+b2a)2=b2-4ac4a2?.?4a2>;0,當(dāng)b2-4acN0時,b2-4ac4a2三0,(x+b2a)2=(b2-4ac2a)2直接開平方,得:x+b2a=土b2-4ac2a即x=-b±b2-4ac2a/.x1=-b+b2-4ac2a,x2=-b-b2-4ac2a由上可知,一元二次方程ax2+bx+c=0(a/0)的根由方程的系數(shù)a,b,c而定,因此:(1)解一元二次方程時,可以先將方程化為一般形式ax2+bx+c=0,當(dāng)b2-4ac三0時,將a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.(2)這個式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.公式的理解(4)由求根公式可知,一元二次方程最多有兩個實數(shù)根.例1用公式法解下列方程:(1)2x2-x-1=0(2)x2+1.5=-3x(3)x2-2x+12=0(4)4x2-3x+2=0分析:用公式法解一元二次方程,首先應(yīng)把它化為一般形式,然后代入公式即可.補:(5)(x-2)(3x-5)=0三、鞏固練習(xí)教材第12頁練習(xí)1.(1)(3)(5)或(2)(4)(6).四、課堂小結(jié)本節(jié)課應(yīng)掌握:(1)求根公式的概念及其推導(dǎo)過程;(2)公式法的概念;(3)應(yīng)用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,注意移項要變號,盡量讓a>0;2)找出系數(shù)a,b,c,注意各項的系數(shù)包括符號;3)計算b2-4ac,若結(jié)果為負(fù)數(shù),方程無解;4)若結(jié)果為非負(fù)數(shù),代入求根公式,算出結(jié)果.(4)初步了解一元二次方程根的情況.五、作業(yè)布置教材第17頁習(xí)題4#593369初中數(shù)學(xué)教案設(shè)計教材分析2一、教材分析1、教材的地位和作用本課位于人民教育出版社義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書七年級下冊第五章第二節(jié)第一課時。主要內(nèi)容是讓學(xué)生在充分感性認(rèn)識的基礎(chǔ)上體會平行線的三種判定方法,它是空間與圖形領(lǐng)域的基礎(chǔ)知識,是《相交線與平行線》的重點,學(xué)習(xí)它會為后面的學(xué)行線性質(zhì)、三角形、四邊形等知識打下堅實的“基石”。同時,本節(jié)學(xué)習(xí)將為加深“角與平行線”的認(rèn)識,建立空間觀念,發(fā)展思維,并能讓學(xué)生在活動的過程中交流分享探索的成果,體驗成功的樂趣,提高運用數(shù)學(xué)的能力。2、教學(xué)重難點重點三種位置關(guān)系的角的特征;會根據(jù)三種位置關(guān)系的角來判斷兩直線平行的方法。難點“轉(zhuǎn)化”的數(shù)學(xué)思想的培養(yǎng)。由“說點兒理”到“用符號表示推理”的逐層加深。二、教學(xué)目標(biāo)知識目標(biāo)了解同位角、內(nèi)錯角、同旁內(nèi)角等角的特征,認(rèn)識“直線平行”的三個充分條件及在實際生活中的應(yīng)用。能力目標(biāo)①通過觀察、思考探索等活動歸納出三種判定方法,培養(yǎng)學(xué)生轉(zhuǎn)化的數(shù)學(xué)思想,培養(yǎng)學(xué)生動手、分析、解決實際問題的能力。②通過活動及實際問題的研究引導(dǎo)學(xué)生從數(shù)學(xué)角度發(fā)現(xiàn)和提出問題,并用數(shù)學(xué)方法探索、研究和解決問題。情感目標(biāo)①感受數(shù)學(xué)與生活的緊密聯(lián)系,體會數(shù)學(xué)的價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)敢想、敢說、敢解決實際問題的學(xué)習(xí)習(xí)慣。通過學(xué)生體驗、猜想并證明,讓學(xué)生體會數(shù)學(xué)充滿著探索和創(chuàng)造,培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作,勇于創(chuàng)新的精神。②通過“轉(zhuǎn)化”數(shù)學(xué)思想方法的運用,讓學(xué)生認(rèn)識事物之間是普遍聯(lián)系,相互轉(zhuǎn)化的辯證唯物主義思想。三、教學(xué)方法1、采用指導(dǎo)探究法進(jìn)行教學(xué),主要通過二個師生雙邊活動:①動一一師生互動,共同探索。②導(dǎo)一一知識類比,合理引導(dǎo)等突出學(xué)生主體地位,讓教師成為學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者,讓學(xué)生親自動手、動腦、動口參與數(shù)學(xué)活動,經(jīng)歷問題的發(fā)生、發(fā)展和解決過程,在解決問題的過程中完成教學(xué)目標(biāo)。2、根據(jù)學(xué)生實際情況,整堂課圍繞“情景問題——學(xué)生體驗——合作交流”模式,鼓勵學(xué)生積極合作,充分交流,既滿足了學(xué)生對新知識的強烈探索欲望,又排除學(xué)生學(xué)習(xí)幾何方法的缺乏,和學(xué)無所用的思想顧慮。對學(xué)習(xí)有困難的學(xué)生及時給予幫助,讓他們在學(xué)習(xí)的過程中獲得愉快和進(jìn)步。3、利用課件輔助教學(xué),突破教學(xué)重難點,擴(kuò)大學(xué)生知識面,使每個學(xué)生穩(wěn)步提高。四、教學(xué)流程:我的教學(xué)流程設(shè)計是:從創(chuàng)設(shè)情境,孕育新知開始,經(jīng)歷探索新知,構(gòu)建模式;解釋新知,落實新知;總結(jié)新知,布置作業(yè)等過程來完成教學(xué)。創(chuàng)設(shè)情境,孕育新知:①師生欣賞三幅圖片,讓學(xué)生觀察、思考從幾何圖形上看有什么共同點。②從學(xué)生經(jīng)歷過的事入手,讓學(xué)生比較兩張獎狀粘貼的好壞,并說明理由,讓學(xué)生留心實際生活,欣賞木工畫平行線的方法。③落實到學(xué)生是否會畫平行線?本環(huán)節(jié)教師展示圖片,學(xué)生觀察思考,交流回答問題,了解實際生活中平行線的廣泛應(yīng)用。設(shè)計意圖:通過圖片和動畫展示,貼近學(xué)生生活,激發(fā)學(xué)生的學(xué)習(xí)興趣。從學(xué)生經(jīng)歷過的事入手。讓學(xué)生知道數(shù)學(xué)知識無處不在,應(yīng)用數(shù)學(xué)無時不有。符合“數(shù)學(xué)教學(xué)應(yīng)從生活經(jīng)驗出發(fā)”的新課程標(biāo)準(zhǔn)要求。2、實驗操作,探索新知1①由學(xué)生是否會畫平行線導(dǎo)入,用小學(xué)學(xué)過的方法過點P畫直線AB的平行線CD,學(xué)生動手畫并展示。②學(xué)生思考三角尺起什么作用(教師點撥)?③學(xué)生動手操作:用學(xué)具塑料條擺兩條平行線被第三條直線所截的模型,并探討圖中角的關(guān)系(同位角)。④教師把學(xué)生畫平行線的過程和塑料條模型抽象成幾何圖形,指明同位角的位置關(guān)系是截線,被截線的同旁,歸納:兩直線平行條件1教師展示一組練習(xí),學(xué)生獨立完成,鞏固新知。在這一環(huán)節(jié)中,教師應(yīng)關(guān)注:①學(xué)生能否畫平行線,動手操作是否準(zhǔn)確②學(xué)生能否獨立探究、參與、合作、交流設(shè)計意圖:復(fù)習(xí)提問,利用教具、學(xué)具讓學(xué)生動手,提高學(xué)生學(xué)習(xí)興趣,調(diào)動學(xué)生思考和積極性,提高學(xué)生合作交流的能力和質(zhì)量,教師有的放矢,讓學(xué)生掌握重點,培養(yǎng)學(xué)生自主探究的學(xué)習(xí)習(xí)慣和能力。及時練習(xí)鞏固,,體現(xiàn)學(xué)以致用的觀念,消除學(xué)生學(xué)無所用的思想顧慮。3、大膽猜想,探究新知⑴學(xué)生分組討論:①N2和N3是什么位置關(guān)系?N3和N4是什么位置關(guān)系?②直線CD繞O旋轉(zhuǎn)是否還保持上述位置關(guān)系?③N2與N3,N2與N4一定相等嗎?猜想,展示討論成果。⑵學(xué)生探究:問題:①N2=N3能得到AB〃CD嗎?②N2+N4=180可以判定AB〃CD嗎?學(xué)生用語言表述推理過程,教師深入學(xué)生中并點撥將未知的轉(zhuǎn)化為已知,并規(guī)范推理過程。和學(xué)生一起歸納直線平行的條件2,3。⑶學(xué)生獨立完成練習(xí)。本環(huán)節(jié)教師關(guān)注:①學(xué)生能否主動參與數(shù)學(xué)活動,敢于發(fā)表個人觀點。②小組團(tuán)結(jié)協(xié)作程度,創(chuàng)新意識。③表揚優(yōu)秀小組設(shè)計意圖:猜想、交流、歸納,符合知識的形成過程,培養(yǎng)學(xué)生轉(zhuǎn)化的數(shù)學(xué)思想,學(xué)會將陌生的轉(zhuǎn)化為熟悉的,將未知的轉(zhuǎn)化為已知的。并用練習(xí)及時鞏固,落實新知與方法,增強學(xué)生運用數(shù)學(xué)的能力。4、解釋運用,鞏固新知本環(huán)節(jié)共有五個練習(xí),第一題落實同位角、內(nèi)錯角、同旁內(nèi)角位置特征。第二、三題落實三種判定方法的應(yīng)用。第四、五題是注重學(xué)生動手操作,解決實際問題的訓(xùn)練。本環(huán)節(jié)教師應(yīng)關(guān)注:①深入學(xué)生當(dāng)中,對學(xué)習(xí)有困難學(xué)生進(jìn)行鼓勵,幫助。②學(xué)生的思維角度是否合理。設(shè)計意圖:加強學(xué)生運用新知的意識,培養(yǎng)學(xué)生解決實際問題的能力和學(xué)習(xí)數(shù)學(xué)的興趣,讓學(xué)生鞏固所學(xué)內(nèi)容,并進(jìn)行自我評價,既面向全體學(xué)生,又照顧個別學(xué)有余力的學(xué)生,體現(xiàn)因材施教的原則。5、總結(jié)新知,布置作業(yè)通過設(shè)問回答補充的方式小結(jié),學(xué)生自主回答三個問題,教師關(guān)注全體學(xué)生對本節(jié)課知識的程度,學(xué)生是否愿意表達(dá)自己的觀點,采用必做題和選做題的方式布置作業(yè)。設(shè)計意圖:通過提問方式引導(dǎo)學(xué)生進(jìn)行小結(jié),養(yǎng)成學(xué)習(xí)——總結(jié)——再學(xué)習(xí)的良好習(xí)慣,發(fā)揮自我評價作用,同時可培養(yǎng)學(xué)生的語言表達(dá)能力。作業(yè)分層要求,做到面向全體學(xué)生,給基礎(chǔ)好的學(xué)生充分的空間,滿足他們的求知欲。五、教學(xué)設(shè)計#593895初中數(shù)學(xué)教案設(shè)計教材分析3教學(xué)目標(biāo)1,整理前兩個學(xué)段學(xué)過的整數(shù)、分?jǐn)?shù)(包括小數(shù))的知識,掌握正數(shù)和負(fù)數(shù)的概念;2,能區(qū)分兩種不同意義的量,會用符號表示正數(shù)和負(fù)數(shù);3,體驗數(shù)學(xué)發(fā)展的一個重要原因是生活實際的需要,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。教學(xué)難點正確區(qū)分兩種不同意義的量。知識重點兩種相反意義的量教學(xué)過程(師生活動)設(shè)計理念設(shè)置情境引入課題上課開始時,教師應(yīng)通過具體的例子,簡要說明在前兩個學(xué)段我們已經(jīng)學(xué)過的數(shù),并由此請學(xué)生思考:生活中僅有這些“以前學(xué)過的數(shù)”夠用了嗎?下面的例子僅供參考.師:今天我們已經(jīng)是七年級的學(xué)生了,我是你們的數(shù)學(xué)老師.下面我先向你們做一下自我介紹,我的名字是,身高1.73米,體重58.5千克,今年40歲.我們的班級是七(13)班,有60個同學(xué),其中男同學(xué)有22個,占全班總?cè)藬?shù)的37%…問題1:老師剛才的介紹中出現(xiàn)了幾個數(shù)?分別是什么?你能將這些數(shù)按以前學(xué)過的數(shù)的分類方法進(jìn)行分類嗎?學(xué)生活動:思考,交流師:以前學(xué)過的數(shù),實際上主要有兩大類,分別是整數(shù)和分?jǐn)?shù)(包括小數(shù)).問題2:在生活中,僅有整數(shù)和分?jǐn)?shù)夠用了嗎?請同學(xué)們看書(觀察本節(jié)前面的幾幅圖中用到了什么數(shù),讓學(xué)生感受引入負(fù)數(shù)的必要性)并思考討論,然后進(jìn)行交流。(也可以出示氣象預(yù)報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)學(xué)生交流后,教師歸納:以前學(xué)過的數(shù)已經(jīng)不夠用了,有時候需要一種前面帶有“-”的新數(shù)。先回顧小學(xué)里學(xué)過的數(shù)的類型,歸納出我們已經(jīng)學(xué)了整數(shù)和分?jǐn)?shù),然后,舉一些實際生活中共有相反意義的量,說明為了表示相反意義的量,我們需要引入負(fù)數(shù),這樣做強調(diào)了數(shù)學(xué)的嚴(yán)密性,但對于學(xué)生來說,更多地感到了數(shù)學(xué)的枯燥乏味為了既復(fù)習(xí)小學(xué)里學(xué)過的數(shù),又能激發(fā)學(xué)生的學(xué)習(xí)興趣,所以創(chuàng)設(shè)如下的問題情境,以盡量貼近學(xué)生的實際.這個問題能激發(fā)學(xué)生探究的欲望,學(xué)生自己看書學(xué)習(xí)是培養(yǎng)學(xué)生自主學(xué)習(xí)的重要途徑,都應(yīng)予以重視。以上的情境和實例使學(xué)生體會生活中處處有數(shù)學(xué),通過實例,使學(xué)生獲取大量的感性材料,為正確建立相反意義的量奠定基礎(chǔ)。分析問題探究新知問題3:前面帶有“一”號的新數(shù)我們應(yīng)怎樣命名它呢?為什么要引人負(fù)數(shù)呢?通常在日常生活中我們用正數(shù)和負(fù)數(shù)分別表示怎樣的量呢?這些問題都必須要求學(xué)生理解.教師可以用多媒體出示這些問題,讓學(xué)生帶著這些問題看書自學(xué),然后師生交流.這階段主要是讓學(xué)生學(xué)會正數(shù)和負(fù)數(shù)的表示.強調(diào):用正,負(fù)數(shù)表示實際問題中具有相反意義的量,而相反意義的量包含兩個要素:一是它們的意義相反,如向東與向西,收人與支出;二是它們都是數(shù)量,而且是同類的量.這些問題是這節(jié)課的主要知識,教師要清楚地向?qū)W生說明,并且要注意語言的準(zhǔn)確與規(guī)范,要舍得花時間讓學(xué)充分發(fā)表想法。舉一反三思維拓展經(jīng)過上面的討論交流,學(xué)生對為什么要引人負(fù)數(shù),對怎樣用正數(shù)和負(fù)數(shù)表示兩種相反意義的量有了初步的理解,教師可以要求學(xué)生舉出實際生活中類似的例子,以加深對正數(shù)和負(fù)數(shù)概念的理解,并開拓思維.問題4:請同學(xué)們舉出用正數(shù)和負(fù)數(shù)表示的例子.問題5:你是怎樣理解“正整數(shù)”“負(fù)整數(shù),,’’正分?jǐn)?shù)”和“負(fù)分?jǐn)?shù)”的呢?請舉例說明.能否舉出例子是學(xué)生對知識掌握程度的體現(xiàn),也能進(jìn)一步幫助學(xué)生理解引負(fù)數(shù)的必要性課堂練習(xí)教科書第5頁練習(xí)小結(jié)與作業(yè)課堂小結(jié)圍繞下面兩點,以師生共同交流的方式進(jìn)行:1,0由于實際問題中存在著相反意義的量,所以要引人負(fù)數(shù),這樣數(shù)的范圍就擴(kuò)大了;2,正數(shù)就是以前學(xué)過的0以外的數(shù)(或在其前面加“+”),負(fù)數(shù)就是在以前學(xué)過的0以外的數(shù)前面加“-”。本課作業(yè)教科書第7頁習(xí)題1.1第1,2,4,5(第3題作為下節(jié)課的思考題。作業(yè)可設(shè)必做題和選做題,體現(xiàn)要求的層次性,以滿足不同學(xué)生的需要本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進(jìn)設(shè)想)密切聯(lián)系生活實際,創(chuàng)設(shè)學(xué)習(xí)情境.本課是有理數(shù)的第一節(jié)課時.引人負(fù)數(shù)是數(shù)的范圍的一次重要擴(kuò)充,學(xué)生頭腦中關(guān)于數(shù)的結(jié)構(gòu)要做重大調(diào)整(其實是一次知識的順應(yīng)過程),而負(fù)數(shù)相對于以前的數(shù),對學(xué)生來說顯得更抽象,因此,這個概念并不是一下就能建立的.為了接受這個新的數(shù),就必須對原有的數(shù)的結(jié)構(gòu)進(jìn)行整理,引人幣的舉例就是這個目的.負(fù)數(shù)的產(chǎn)生主要是因為原有的數(shù)不夠用了(不能正確簡潔地表示數(shù)量),書本的例子或圖片中出現(xiàn)的負(fù)數(shù)就是讓學(xué)生去感受和體驗這一點.使學(xué)生接受生活生產(chǎn)實際中確實存在著兩種相反意義的量是本課的教學(xué)難點,所以在教學(xué)中可以多舉幾個這方面的例子,并且所舉的例子又應(yīng)該符合學(xué)生的年齡和思維特點。當(dāng)學(xué)生接受了這個事實后,引入負(fù)數(shù)(為了區(qū)分這兩種相反意義的量)就是順理成章的事了.這個教學(xué)設(shè)計突出了數(shù)學(xué)與實際生活的緊密聯(lián)系,使學(xué)生體會到數(shù)學(xué)的應(yīng)用價值,體現(xiàn)了學(xué)生自主學(xué)習(xí)、合作交流的教學(xué)理念,書本中的圖片和例子都是生活生產(chǎn)中常見的事實,學(xué)生容易接受,所以應(yīng)該讓學(xué)生自己看書、學(xué)習(xí),并且鼓勵學(xué)生討論交流,教師作適當(dāng)引導(dǎo)就可以了。#592608初中數(shù)學(xué)教案設(shè)計教材分析4課題名稱:完全平方公式(1)一、內(nèi)容簡介本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式。關(guān)鍵信息:1、以教材作為出發(fā)點,依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關(guān)系。通過學(xué)生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗,得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達(dá)與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。2、用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。二、學(xué)習(xí)者分析:1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識和技能:①同類項的定義。②合并同類項法則③多項式乘以多項式法則。2、學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。三、教學(xué)/學(xué)習(xí)目標(biāo)及其對應(yīng)的課程標(biāo)準(zhǔn):(一)教學(xué)目標(biāo):1、經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號感和推力能力。2、會推導(dǎo)完全平方公式,并能運用公式進(jìn)行簡單的計算。(二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認(rèn)識有理數(shù)、實數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運用代數(shù)式、防城、不等式、函數(shù)等進(jìn)行描述。(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。(五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。四、教育理念和教學(xué)方式:1、教師是學(xué)生學(xué)習(xí)的組織者、促進(jìn)者、合作者:學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動的、富有個性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。教學(xué)是師生交往、積極互動、共同發(fā)展的過程。當(dāng)學(xué)生迷路的時候,教師不輕易告訴方向,而是引導(dǎo)他怎樣去辨明方向;當(dāng)學(xué)生登山畏懼了的時候,教師不是拖著他走,而是喚起他內(nèi)在的精神動力,鼓勵他不斷向上攀登。2、采用“問題情景—探究交流—得出結(jié)論—強化訓(xùn)練”的模式展開教學(xué)。3、教學(xué)評價方式:(1)通過課堂觀察,關(guān)注學(xué)生在觀察、總結(jié)、訓(xùn)練等活動中的主動參與程度與合作交流意識,及時給與鼓勵、強化、指導(dǎo)和矯正。(2)通過判斷和舉例,給學(xué)生更多機(jī)會,在自然放松的狀態(tài)下,揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學(xué)情,調(diào)查教學(xué)。(3)通過課后訪談和作業(yè)分析,及時查漏補缺,確保達(dá)到預(yù)期的教學(xué)效果。五、教學(xué)媒體:多媒體六、教學(xué)和活動過程:教學(xué)過程設(shè)計如下:〈一〉、提出問題[引入]同學(xué)們,前面我們學(xué)習(xí)了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的關(guān)系嗎?(2m+3n)2= ,(-2m-3n)2= ,(2m-3n)2= ,(-2m+3n)2= ?!炊?、分析問題1、[學(xué)生回答]分組交流、討論(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。(1)原式的特點。(2)結(jié)果的項數(shù)特點。(3)三項系數(shù)的特點(特別是符號的特點)。(4)三項與原多項式中兩個單項式的關(guān)系。2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.〈三〉、運用公式,解決問題1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)TOC\o"1-5"\h\z(m+n)2= ,(m-n)2= ,(-m+n)2= ,(-m-n)2= ,(a+3)2= ,(-c+5)2= ,(-7-a)2= ,(0.5-a)2= .2、判斷:()①(a-2b)2=a2-2ab+b2()②(2m+n)2=2m2+4mn+n2()③(—n—3m)2=n2—6mn+9m2()④(5a+0.2b)2=25a2+5ab+0.4b2()⑤(5a—0.2b)2=5a2—5ab+0.04b2()⑥(-a-2b)2=(a+2b)2()⑦(2a-4b)2=(4a-2b)2()⑧(-5m+n)2=(-n+5m)23、小試牛刀①(x+y)2=;②(-y-x)2=;③(2x+3)2=;?(3a-2)2=;⑤(2x+3y)2=;⑥(4x-5y)2=;⑦(0.5m+n)2=;⑧(a-0.6b)2=.〈四〉、[學(xué)生小結(jié)]你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?(1)公式右邊共有3項。(2)兩個平方項符號永遠(yuǎn)為正。(3)中間項的符號由等號左邊的兩項符號是否相同決定。(4)中間項是等號左邊兩項乘積的2倍。〈五〉、冒險島:(1)(—3a+2b)2= (2)(—7—2m)2= (3)(-0.5m+2n)2= (4)(3/5a-1/2b)2= (5)(mn+3)2= (6)(a2b-0.2)2= (7)(2xy2-3x2y)2= (8)(2n3-3m3)2= 〈六〉、學(xué)生自我評價[小結(jié)]通過本節(jié)課的學(xué)習(xí),你有什么收獲和感悟?本節(jié)課,我們自己通過計算、分析結(jié)果,總結(jié)出了完全平方公式。在知識探索的過程中,同學(xué)們積極思考,大膽探索,團(tuán)結(jié)協(xié)作共同取得了進(jìn)步?!雌摺担圩鳂I(yè)]P34隨堂練習(xí)P36習(xí)題#593371初中數(shù)學(xué)教案設(shè)計教材分析5一、教材分析:勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運用。據(jù)此,制定教學(xué)目標(biāo)如下:1、理解并掌握勾股定理及其證明。2、能夠靈活地運用勾股定理及其計算。3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。二、教學(xué)重點:勾股定理的證明和應(yīng)用。三、教學(xué)難點:勾股定理的證明。四、教法和學(xué)法:教法和學(xué)法是體現(xiàn)在整個教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點:以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程。切實體現(xiàn)學(xué)生的主體地位
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中共中央對外聯(lián)絡(luò)部事業(yè)單位2026年度公開招聘工作人員備考題庫及完整答案詳解1套
- 暑假前安全教育課件下載
- 2026-2030中國足部滋潤霜行業(yè)市場分析及競爭形勢與發(fā)展前景預(yù)測研究報告
- 2025-2030中國包裝設(shè)計行業(yè)發(fā)展分析及競爭格局與發(fā)展趨勢預(yù)測研究報告
- 2025至2030中國區(qū)塊鏈技術(shù)應(yīng)用場景及投資潛力分析報告
- 2026年武義縣大田鄉(xiāng)人民政府招聘備考題庫及一套答案詳解
- 2025至2030私募股權(quán)行業(yè)市場發(fā)展分析及前景趨勢與投資策略研究報告
- 2025至2030港口機(jī)械行業(yè)政策導(dǎo)向分析及區(qū)域市場潛力與資產(chǎn)證券化路徑研究報告
- 中央戲劇學(xué)院2025年招聘備考題庫(智能戲劇藝術(shù)空間教育部重點實驗室)及1套參考答案詳解
- 2025-2030中國交流斷路器行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 重癥醫(yī)學(xué)科醫(yī)院感染控制原則專家共識(2024)解讀
- 綜合門診部管理制度
- 定制手機(jī)采購合同協(xié)議
- 數(shù)據(jù)治理實施方案
- 煤磨動火作業(yè)施工方案
- 工程施工及安全管理制度
- 虛擬電廠解決方案
- 嗜酸性粒細(xì)胞與哮喘發(fā)病關(guān)系的研究進(jìn)展
- 《陸上風(fēng)電場工程可行性研究報告編制規(guī)程》(NB/T 31105-2016)
- 京瓷哲學(xué)手冊樣本
- 五年級簡便計算100題
評論
0/150
提交評論