最優(yōu)化理論與方法lec10-penalty課件_第1頁(yè)
最優(yōu)化理論與方法lec10-penalty課件_第2頁(yè)
最優(yōu)化理論與方法lec10-penalty課件_第3頁(yè)
最優(yōu)化理論與方法lec10-penalty課件_第4頁(yè)
最優(yōu)化理論與方法lec10-penalty課件_第5頁(yè)
已閱讀5頁(yè),還剩71頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

IntroductionThegeneralclassofpenalizationmethodsincludestwogroupsofmethods:Onegroupimposesapenaltyforviolatingaconstraint;Theotherimposesapenaltyforreachingtheboundaryofaninequalityconstraint.

(ii)BarrierMethods(i)PenaltyMethodsThispartdiscussesagroupofmethods,referredtoaspenalizationmethods,whichsolveaconstrainedoptimizationproblembysolvingasequenceofunconstrainedoptimizationproblems.Thehopeisthat,inthelimit,thesolutionsoftheunconstrainedproblemswillconvergetothesolutionoftheconstrainedproblem.IntroductionThegeneralclaIntroductionSupposethatourconstrainedproblemisgivenintheformDefineHencetheconstrainedproblemcanbetransformedintoequivalentunconstrainedproblemConceptually,ifwecouldsolvethisunconstrainedminimizationproblemwewouldbedone.IntroductionSupposethatourcIntroductionUnfortunatelythisisnotapracticalidea,sincetheobjectivefunctionoftheunconstrainedminimizationisnotdefinedoutsidethefeasibleregion.Barrierandpenaltymethodssolveasequenceofunconstrainedsubproblemsthataremore“manageable”.BarrierMethodsPenaltyMethodsbarriertermpenaltytermIntroductionUnfortunatelythisIntroductiongenerateasequenceofstrictlyfeasibleiteratesthatconvergetoasolutionoftheproblemfromtheinteriorofthefeasibleregionalsocalledinterior-pointmethodssincethemethodsrequiretheinteriorofthefeasibleregiontobenonempty,theyarenotappropriateforproblemswithequalityconstraintsBarriermethodsPenaltymethodsgenerateasequenceofpointsthatconvergestoasolutionoftheproblemfromtheexteriorofthefeasibleregionusuallymoreconvenientonproblemswithequalityconstraintsIntroductiongenerateasequencIntroductionDespitetheirapparentdifferences,barrierandpenaltymethodshavemuchincommon.Theirconvergencetheoriesaresimilar,andtheunderlyingstructureoftheirunconstrainedproblemsissimilarMuchofthetheoryforbarriermethodscanbereplicatedforpenaltymethodsandviceversaItiscommontousethegenericname“penaltymethods”todescribebothmethodsBarrierMethodsPenaltyMethodsinteriorpenaltymethodsexteriorpenaltymethodsIntroductionDespitetheirappaBarrierMethodsConsiderthenonlinearinequality-constrainedproblemThefunctionsareassumedtobetwicecontinuouslydifferentiable.BarrierMethodsConsiderthenoBarrierFunctionsTwoexamplesofsuchafunctionarethelogarithmicfunctionBarrierFunctionsTwoexamplesBarrierFunctionsEffectofBarrierTermaone-dimensionalproblemwithboundedconstraintsBarrierFunctionsEffectofBarBarrierFunctionsThebestknownbarrierfunctionisthelogarithmicbarrierfunction:buttheinversebarrierfunctionisalsowidelyused:BarrierFunctionsThebestknowBarrierFunctionsBarriermethodssolveasequenceofunconstrainedminimizationproblemsoftheformAsthebarrierparameterisdecreased,theeffectofthebarriertermisdiminished,sothattheiteratescangraduallyapproachtheboundaryofthefeasibleregion.BarrierFunctionsBarriermeBarrierMethods–Example1Considerthenonlinearprogram:ThenthelogarithmicbarrierfunctiongivestheunconstrainedproblemBarrierMethods–Example1CoBarrierMethods–Example1Iftheconstraintsarestrictlysatisfied,thedenominatorsarepositive.Theunconstrainedobjectiveisstrictlyconvex,hencethissolutionistheuniquelocalminimizerinthefeasibleregion.BarrierMethods–Example1IfBarrierMethods–SomeRemarksFromtheExample1,weseethatIndeed,itispossibletoproveconvergenceforbarriermethodsundermildconditions.barriertrajectoryAregularpointisapointthatsatisfiessomeconstraintqualification(LICQ).BarrierMethods–SomeRemarksBarrierMethods–SomeRemarksSettingthegradientofthebarrierfunctiontozeroweobtain.BarrierMethods–SomeRemarksBarrierMethods–SomeRemarksTheaboveresultsshowthatthepointsonthebarriertrajectory,togetherwiththeirassociatedLagrangemultiplierestimates,arethesolutionstoaperturbationofthefirst-orderoptimalityconditionsExample2Obviously,theoptimum:BarrierMethods–SomeRemarksBarrierMethods–Example2Thefirst-ordernecessaryconditionsforoptimalityare:Supposetheproblemissolvedviaalogarithmicbarriermethod.ThenthemethodsolvestheunconstrainedminimizationproblemTheLagrangemultiplierestimatesatthispointare:BarrierMethods–Example2TheBarrierMethods–SomeRemarksAnotherdesirablepropertysharedbyboththelogarithmicbarrierfunctionandtheinversebarrierfunctionisthatthebarrierfunctionisconvexiftheconstrainedproblemisaconvexprogram.Barriermethodsalsohavepotentialdifficulties.Thepropertyforwhichbarriermethodshavedrawnthemostseverecriticismisthattheunconstrainedproblemsbecomeincreasinglydifficulttosolveasthebarrierparameterdecreases.——Thereasonisthat(withtheexceptionofsomespecialcases)theconditionnumberoftheHessianmatrixofthebarrierfunctionatitsminimumpointbecomesincreasinglylarge,tendingtoinfinityasthebarrierparametertendstozero.BarrierMethods–SomeRemarksBarrierMethods–Example3ConsidertheproblemofExample2.ThenTheHessianmatrixisillconditioned.BarrierMethods–Example3ConBarrierMethodsBarriermethodsrequirethattheinitialguessofthesolutionbestrictlyfeasible.Inourexamples,suchaninitialguesshasbeenprovided,butforgeneralproblemsastrictlyfeasiblepointmaynotbeknown.Itissometimespossibletofindaninitialpointbysolvinganauxiliaryoptimizationproblem.Thisisanalougoustotheuseofatwo-phasemethodinlinearprogramming.BarrierMethodsBarriermethodsPenaltyMethodsIncontrasttobarriermethods,penaltymethodssolveasequenceofunconstrainedoptimizationproblemswhosesolutionisusuallyinfeasibletotheoriginalconstrainedproblem.Apenaltyforviolationoftheconstraintsisincurred.Asthispenaltyisincreased,theiteratesareforcedtowardsthefeasibleregion.Anadvantageofpenaltymethodsisthattheydonotrequiretheiteratestobestrictlyfeasible.Thus,unlikebarriermethods,theyaresuitableforproblemswithequalityconstraints.Considertheequality-constrainedproblemAssumethatallfunctionsaretwicecontinuouslydifferentiable.PenaltyMethodsIncontrastPenaltyMethodsThebest-knownsuchpenaltyisthequadratic-lossfunction:AlsopossibleisapenaltyoftheformPenaltyMethodsThebest-knownPenaltyMethodsThepenaltymethodconsistsofsolvingasequenceofunconstrainedminimizationproblemsoftheformPenaltymethodssharemanyofthepropertiesofbarriermethods:Undermildconditions,itispossibletoguaranteeconvergenceUnderappropriateconditions,thesequenceofpenaltyfunctionminimizersdefinesacontinuoustrajectoryItispossibletogetestimatesoftheLagrangemultipliersatthesolutionPenaltyMethodsThepenaltymetPenaltyMethodsForexample,considerthequadratic-losspenaltyfunctionPenaltyMethodsForexample,coPenaltyMethods–Example3Supposethatthisproblemissolvedviaapenaltymethodusingthequadratic-losspenaltyfunction.ConsidertheproblemThenecessaryconditionsforoptimalityfortheunconstrainedproblemarePenaltyMethods–Example3SupPenaltyMethods–Example3DefineaLagrangemultiplierestimate:PenaltyMethods–Example3DefPenaltyMethods–Example3Penaltyfunctionssufferfromthesameproblemsofillconditioningasdobarrierfunctions.PenaltyMethods–Example3PenPenaltyMethodsItisalsopossibletoapplypenaltymethodstoproblemswithinequalityconstraints.Thequadratic-losspenaltyinthiscaseisThisfunctionhascontinuousfirstderivativesPenaltyMethodsItisalsopossPenaltyMethodsThesameobservationholdsforothersimpleformsofthepenaltyfunction.Thus,onecannotsafelyuseNewton’smethodtominimizethefunction.Forthisreason,straightforwardpenaltymethodshavenotbeenwidelyusedforsolvinggeneralinequality-constrainedproblems.PenaltyMethodsThesameobservMultiplier-BasedMethodsTheillconditioningofpenaltymethodscanbeamelioratedbyincludingmultipliersexplicitlyinthepenaltyfunction.Ofcourse,multipliersappearinthecontextoftheclassicalpenaltymethod,butinthatcasetheyareaby-productofthemethod.Forexample,inclassicalpenaltymethod,themultiplierestimateiswheregisthevectorofconstraintfunctions.ThesemultiplierestimatesareusedinterminationtestsinsensitivityanalysisinamoreactivewaytoderiveanoptimizationalgorithmMultiplier-BasedMethodsThMultiplier-BasedMethodsExaminingproblemsoftheformaugmentedLagrangianmethodMultiplier-BasedMethodsExaminMultiplier-BasedMethods–AlgorithmAsimpleaugmented-Lagrangianmethodhasthefollowingform:Multiplier-BasedMethods–AlgMultiplier-BasedMethodsCommentsonthefinalsteprequires.ThealgorithmwillterminatewhenMultiplier-BasedMethodsCommenMultiplier-BasedMethods–ExampleTheaugmented-LagrangianfunctionisMultiplier-BasedMethods–ExaMultiplier-BasedMethods–ExampleAttheinitialpointMultiplier-BasedMethods–ExaMultiplier-BasedMethods–ExampleUseNewton’smethodtosolvetheunconstrainedsubproblem.Multiplier-BasedMethods–ExaMultiplier-BasedMethodsSomebasicpropertiesoftheaugmented-Lagrangianfunction:Thisshowsthattheobjectivefunctionandtheaugmented-Lagrangianfunctionhavethesamevalueatthesolution.Hencethegradientoftheaugmented-LagrangianisequaltothegradientoftheLagrangian,andvanishesatthesolution.Multiplier-BasedMethodsSomebMultiplier-BasedMethodsAmultiplier-basedmethodcanalsobederivedforproblemswithinequalityconstraintsThenthemultipliersareupdatedusingMultiplier-BasedMethodsAmultMultiplier-BasedMethodsInthebarriermethod,everyestimateofthesolutionhastobestrictlyfeasiblesothatthelogarithmicbarriertermcanbeevaluated.Themodifiedbarrierfunctionhasmanyofthesamepropertiesastheaugmented-Lagrangianfunction.Multiplier-BasedMethodsIntheIntroductionThegeneralclassofpenalizationmethodsincludestwogroupsofmethods:Onegroupimposesapenaltyforviolatingaconstraint;Theotherimposesapenaltyforreachingtheboundaryofaninequalityconstraint.

(ii)BarrierMethods(i)PenaltyMethodsThispartdiscussesagroupofmethods,referredtoaspenalizationmethods,whichsolveaconstrainedoptimizationproblembysolvingasequenceofunconstrainedoptimizationproblems.Thehopeisthat,inthelimit,thesolutionsoftheunconstrainedproblemswillconvergetothesolutionoftheconstrainedproblem.IntroductionThegeneralclaIntroductionSupposethatourconstrainedproblemisgivenintheformDefineHencetheconstrainedproblemcanbetransformedintoequivalentunconstrainedproblemConceptually,ifwecouldsolvethisunconstrainedminimizationproblemwewouldbedone.IntroductionSupposethatourcIntroductionUnfortunatelythisisnotapracticalidea,sincetheobjectivefunctionoftheunconstrainedminimizationisnotdefinedoutsidethefeasibleregion.Barrierandpenaltymethodssolveasequenceofunconstrainedsubproblemsthataremore“manageable”.BarrierMethodsPenaltyMethodsbarriertermpenaltytermIntroductionUnfortunatelythisIntroductiongenerateasequenceofstrictlyfeasibleiteratesthatconvergetoasolutionoftheproblemfromtheinteriorofthefeasibleregionalsocalledinterior-pointmethodssincethemethodsrequiretheinteriorofthefeasibleregiontobenonempty,theyarenotappropriateforproblemswithequalityconstraintsBarriermethodsPenaltymethodsgenerateasequenceofpointsthatconvergestoasolutionoftheproblemfromtheexteriorofthefeasibleregionusuallymoreconvenientonproblemswithequalityconstraintsIntroductiongenerateasequencIntroductionDespitetheirapparentdifferences,barrierandpenaltymethodshavemuchincommon.Theirconvergencetheoriesaresimilar,andtheunderlyingstructureoftheirunconstrainedproblemsissimilarMuchofthetheoryforbarriermethodscanbereplicatedforpenaltymethodsandviceversaItiscommontousethegenericname“penaltymethods”todescribebothmethodsBarrierMethodsPenaltyMethodsinteriorpenaltymethodsexteriorpenaltymethodsIntroductionDespitetheirappaBarrierMethodsConsiderthenonlinearinequality-constrainedproblemThefunctionsareassumedtobetwicecontinuouslydifferentiable.BarrierMethodsConsiderthenoBarrierFunctionsTwoexamplesofsuchafunctionarethelogarithmicfunctionBarrierFunctionsTwoexamplesBarrierFunctionsEffectofBarrierTermaone-dimensionalproblemwithboundedconstraintsBarrierFunctionsEffectofBarBarrierFunctionsThebestknownbarrierfunctionisthelogarithmicbarrierfunction:buttheinversebarrierfunctionisalsowidelyused:BarrierFunctionsThebestknowBarrierFunctionsBarriermethodssolveasequenceofunconstrainedminimizationproblemsoftheformAsthebarrierparameterisdecreased,theeffectofthebarriertermisdiminished,sothattheiteratescangraduallyapproachtheboundaryofthefeasibleregion.BarrierFunctionsBarriermeBarrierMethods–Example1Considerthenonlinearprogram:ThenthelogarithmicbarrierfunctiongivestheunconstrainedproblemBarrierMethods–Example1CoBarrierMethods–Example1Iftheconstraintsarestrictlysatisfied,thedenominatorsarepositive.Theunconstrainedobjectiveisstrictlyconvex,hencethissolutionistheuniquelocalminimizerinthefeasibleregion.BarrierMethods–Example1IfBarrierMethods–SomeRemarksFromtheExample1,weseethatIndeed,itispossibletoproveconvergenceforbarriermethodsundermildconditions.barriertrajectoryAregularpointisapointthatsatisfiessomeconstraintqualification(LICQ).BarrierMethods–SomeRemarksBarrierMethods–SomeRemarksSettingthegradientofthebarrierfunctiontozeroweobtain.BarrierMethods–SomeRemarksBarrierMethods–SomeRemarksTheaboveresultsshowthatthepointsonthebarriertrajectory,togetherwiththeirassociatedLagrangemultiplierestimates,arethesolutionstoaperturbationofthefirst-orderoptimalityconditionsExample2Obviously,theoptimum:BarrierMethods–SomeRemarksBarrierMethods–Example2Thefirst-ordernecessaryconditionsforoptimalityare:Supposetheproblemissolvedviaalogarithmicbarriermethod.ThenthemethodsolvestheunconstrainedminimizationproblemTheLagrangemultiplierestimatesatthispointare:BarrierMethods–Example2TheBarrierMethods–SomeRemarksAnotherdesirablepropertysharedbyboththelogarithmicbarrierfunctionandtheinversebarrierfunctionisthatthebarrierfunctionisconvexiftheconstrainedproblemisaconvexprogram.Barriermethodsalsohavepotentialdifficulties.Thepropertyforwhichbarriermethodshavedrawnthemostseverecriticismisthattheunconstrainedproblemsbecomeincreasinglydifficulttosolveasthebarrierparameterdecreases.——Thereasonisthat(withtheexceptionofsomespecialcases)theconditionnumberoftheHessianmatrixofthebarrierfunctionatitsminimumpointbecomesincreasinglylarge,tendingtoinfinityasthebarrierparametertendstozero.BarrierMethods–SomeRemarksBarrierMethods–Example3ConsidertheproblemofExample2.ThenTheHessianmatrixisillconditioned.BarrierMethods–Example3ConBarrierMethodsBarriermethodsrequirethattheinitialguessofthesolutionbestrictlyfeasible.Inourexamples,suchaninitialguesshasbeenprovided,butforgeneralproblemsastrictlyfeasiblepointmaynotbeknown.Itissometimespossibletofindaninitialpointbysolvinganauxiliaryoptimizationproblem.Thisisanalougoustotheuseofatwo-phasemethodinlinearprogramming.BarrierMethodsBarriermethodsPenaltyMethodsIncontrasttobarriermethods,penaltymethodssolveasequenceofunconstrainedoptimizationproblemswhosesolutionisusuallyinfeasibletotheoriginalconstrainedproblem.Apenaltyforviolationoftheconstraintsisincurred.Asthispenaltyisincreased,theiteratesareforcedtowardsthefeasibleregion.Anadvantageofpenaltymethodsisthattheydonotrequiretheiteratestobestrictlyfeasible.Thus,unlikebarriermethods,theyaresuitableforproblemswithequalityconstraints.Considertheequality-constrainedproblemAssumethatallfunctionsaretwicecontinuouslydifferentiable.PenaltyMethodsIncontrastPenaltyMethodsThebest-knownsuchpenaltyisthequadratic-lossfunction:AlsopossibleisapenaltyoftheformPenaltyMethodsThebest-knownPenaltyMethodsThepenaltymethodconsistsofsolvingasequenceofunconstrainedminimizationproblemsoftheformPenaltymethodssharemanyofthepropertiesofbarriermethods:Undermildconditions,itispossibletoguaranteeconvergenceUnderappropriateconditions,thesequenceofpenaltyfunctionminimizersdefinesacontinuoustrajectoryItispossibletogetestimatesoftheLagrangemultipliersatthesolutionPenaltyMethodsThepenaltymetPenaltyMethodsForexample,considerthequadratic-losspenaltyfunctionPenaltyMethodsForexample,coPenaltyMethods–Example3Supposethatthisproblemissolvedviaapenaltymethodusingthequadratic-losspenaltyfunction.ConsidertheproblemThenecessaryconditionsforoptimalityfortheunconstrainedproblemarePenaltyMethods–Example3SupPenaltyMethods–Example3DefineaLagrangemultiplierestimate:PenaltyMethods–Example3DefPenaltyMethods–Example3Penaltyfunctionssufferfromthesameproblemsofillconditioningasdobarrierfunctions.PenaltyMethods–Example3PenPenaltyMethodsItisalsopossibletoapplypenaltymethodstoproblemswithinequalityconstraints.Thequadratic-losspenaltyinthiscaseisThisfunctionhascontinuousfirstderivativesPenaltyMethodsItisalsopossPenaltyMethodsThesameobservationholdsforothersimpleformsofthepenaltyfunction.Thus,onecannotsafelyuseNewton’smethodtominimizethefunction.Forthisreason,straightforwardpenaltymethodshavenotbeenwidelyusedforsolvinggeneralinequality-constrainedproblems.PenaltyMethodsThesameo

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論