對(duì)磨輪剖面資料的建模分析_第1頁(yè)
對(duì)磨輪剖面資料的建模分析_第2頁(yè)
對(duì)磨輪剖面資料的建模分析_第3頁(yè)
對(duì)磨輪剖面資料的建模分析_第4頁(yè)
對(duì)磨輪剖面資料的建模分析_第5頁(yè)
已閱讀5頁(yè),還剩5頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

對(duì)磨輪剖面資料的建模分析江南大學(xué)信計(jì)1103班陳鷺1301110301摘要:本文借助Eviews6.0軟件使用B-J方法與P-W方法建立關(guān)于磨輪剖面資料的數(shù)學(xué)模型。使用B-J方法建模得到的結(jié)果為:X=0.944259X尸】。模型的適應(yīng)性檢驗(yàn)結(jié)果表明模型適合,且準(zhǔn)確性較好。再通過(guò)P-W方法建模,ARMA(2,1)的模型是比較適合的,通過(guò)P值判斷刪去不顯著的參數(shù)得到最終的模型為:X=1.210498X-0.406213X+a+0.694062a,。一、使用B-j方法建立數(shù)'亭模'型I1.1對(duì)原始數(shù)據(jù)平穩(wěn)化的判斷使用Eviews6.0軟件做出原始數(shù)據(jù)的趨勢(shì)圖,如圖(1)所示。由原始數(shù)據(jù)圖可以看出,數(shù)據(jù)沒(méi)有上升或下降趨勢(shì),也不表現(xiàn)出周期性,故初步判斷該序列平穩(wěn)。對(duì)原始數(shù)據(jù)進(jìn)行ADF檢驗(yàn),如下圖結(jié)果,表中T=-4.735499小于ADF表中1%?5%水平下的臨界值,故拒絕原假設(shè),即不存在單位根,因此,該原始序列是平穩(wěn)的。NullHypothesis:SER01hasaunitrootExogenous:Constant,Linea「T「enciLagLength:0[AutomaticbasedonAIC,MAXLAG=11)t-StatisticProb*AugmentedDickey-Fullerteststatistic-4.7354990.0014Testcriticalvalues:1%level-4.0007135%level-347255310%level-3.163450*MacKinnonf1996)one-sidedp-values.AugmentedDickey-FullerTestEquationDependentvariable:D(SER01)Method:LeastSquares□ate:12/01/13Time:15:57Sample(adjusted):20142036Includedobservations:73afteradjustmentsVariableCoefficientStd.Errort-StatisticProb.SER01H)-0.4303320.10U32-4.7354990.0000C4.1135S21.1094793.7076710.0004@TREND(2013)0.0110720.0155370.7641130.4474R-squared0.242660Meandependentvar-0.094521AdjustedR-squared0.221022S.D.dependentvar3.134215S.E.ofreg「ession2.766250Akaikeinfocriterion4.913090Sumsquaredresid535.6497Schwarzcriterion5.00721SLoglikelihood-1763278Hannan-Quinncriter.4.950602F-statistic11.21439Durbin-Watsonstat1.717210ProbfF-statistic)0.0000602.模型識(shí)別使用Eviews6.0軟件做出原始數(shù)據(jù)的自相關(guān),偏自相關(guān)函數(shù)圖像,如下圖。取M=[v74]=8,當(dāng)m=1時(shí),、上1(A22折u+2p「。其在Pk?=2,3,4,5,6,7,8,9)中滿足pJ<0.156的占|=62.5%當(dāng)m=2時(shí),在p(k=3,4,5,6,7,8,9,10)中滿足p<[上(1+注p2)]2=0.150的占kknit=16=75.0%>68.3%,因而pk為2步截尾??沙醪脚卸ㄔ撔蛄蠿七適合MA(2)模型。對(duì)于偏自相關(guān)函數(shù)中序列,當(dāng)k=1時(shí),巾,。,...,?中滿足kk223399cA>-^=0.232的個(gè)數(shù)占上=12.5%<31.7%,因而中在1步截尾。可初步判斷該kk!N8kk

序列Xf也適合AR(1)模型,下面分別考慮兩種模型的優(yōu)劣?!鮝te:12/01/13Time:16:03Sample:20132036Includecfobservations:74AutocorrelationPartialCorrelationACFACQ-StatProb11110.5250.52521.1960.0001n11i20.233-0.05325.4510.00013i11i30.031-0.02525.9710.000|E11匚i4-0.097-0.16426.7300.000|匚111i5-0.166-0.05423.9790.000111160.0330.24729.0720.0001□11Ji70.1200.04230.2770.0001□I1]i30.1740.07132.3670.0001□111i90.140-0.06134.7680.00011ICi10-0.010-0.15934.7930.0001匚11i11-0.1200.00136.0790.0001匚11.1i12-0.155-0.03030.2490.0001匚11Ii13-0.1330.03339.0760.0001[11iU-0.0510.00340.1240.0001111i150.042-0.01540.2910.0001Ii11i160.049-0.02640.5270.001J111匚i17-0.0M-0.13240.7170.0011匚11[i18-0.159-0.09543.2490.001IC11Ii19-0.1730.040463140.000仁1(.1i20-0.190-0.04850.0600.0001匚111i21-0.159-0.03652.7500.000J111i22-0.0330.01552.3710.0001111i230.0490.00253.1370.0001]11i240.0500.01253.4150.0011]11]i250.0770.06S54.1020.0011]11]i260.0740.07354.7510.00113i1Ji270.0670.08655.2030.001|i11匚i23-0.033-0.16455.4170.002J111i29-0.0280.01355.5140.002J1111i30-0.027-0.04055.6090.003111]i310.0110.04955.6250.0041Ii1]i320.0570.07256.0530.0053.模型定階對(duì)上面的序列進(jìn)行殘差方差圖定階,先做出模型從1階開(kāi)始的剩余平方和,并做出一定階數(shù)范圍內(nèi)的殘差方差圖,如下。可以看出模型MA(2)階數(shù)m從1上升至2時(shí),殘差方差減小較快;模型階數(shù)m繼續(xù)上升時(shí),殘差方差開(kāi)始增大,可以判斷合適的模型階數(shù)為2。而在AR模型殘差方差圖中可以看出,適合的模型階數(shù)為1。3200MA模型殘差方差圖AR模型殘差方差圖4.模型擬合與檢驗(yàn)使用Eviews6.0軟件得到如下結(jié)果進(jìn)行分析:DependentVariable:SER01Method:LeastSquaresDate:12/01/13Time:17:16Sample:20132036Includedobservations:74Convergenceachievedafter13iterationsMASackcast:20112012VariableCoefficientStd.Errort-StatisticProb.M.A⑴1.2362150.09223813.395220.0000MA(2)0.641S650.0929046.9000930.0000R-squarecf-1.107575Meandependentvar9.633784AdjustedR-squared-1.136047S.D.dependentvar3.247434S.E.ofregression4.747035Akaikeinfocriterion5.979594Sumsquaredresid1622.507Schwarzcriterion6.041366Loglikelihood-219.2450Hannan-Quinncriter.6.004435Durbin-Watsonstat1.524675InvertedMARoots-.62-51i-.62+51i由上圖可以知道MA(2)模型為:X=a-1.236215a1—0.641865a2IIIIIIII■303Q203020402050206020302090——SEtJOIF----72S.E對(duì)模型進(jìn)行預(yù)測(cè),如下圖,可以看到預(yù)測(cè)值波動(dòng)性大,不相等系數(shù)為IIIIIIII■303Q203020402050206020302090——SEtJOIF----72S.EF-DieDast:SEREFActifal:SERSF<jpEDastsample:2313205(2litcImdeElobEervatrane:50RootKaanSqirirecfError4.74SS2Bk拒anAbsoluteErrorB.SE4S4TWearAbs.PervertError45J23O5TheilIneiiKlityCneffkjent0.2753S1BiasProporttoF0.49&599VariaRDaProportion0.843了,CovarianoeProporttorO.M&53-D使用Eviews6.0軟件得到如下結(jié)果進(jìn)行分析:

DependentVariable:SER02Method:LeastSquaresDate:12;03/13Time:15:23Sample(adjusted}:20142086Includedobservations:73afteradjustmentsConvergenceachievedafter2iterationsVariableCoefficientStd.Errort-StatisticProb.AR⑴0.9442590.03537726.690930.0000R-squarecf0.093229Meandependentvar9.530822AdjustedR-squared0.093229S.D.dependentvar3.237563S.E.ofregression3.0S2960Akaikeinfocriterion5.10S261Sumsquaredresid684.3342Schwarzcriterion5.134637Loglikelihood-105.2690Hannan-Quinncriter.5.115765Durbin-Watsonstat2.119731Inverted.^RRoots.94有上圖可以知道AR(1)模型為:X=0.944259X「a對(duì)模型進(jìn)行預(yù)測(cè),如下圖,可以看到預(yù)測(cè)值波動(dòng)性大,不相等系數(shù)為16%,其中協(xié)方差比列為97%,方差比列為0.3%。因此,認(rèn)為AR(1)模型比MA(2)模型擬合更好,更適合。Forecast:SEROTFAct^l:SER01Forecastsample:231322?Acfjustedsample:20t4Forecast:SEROTFAct^l:SER01Forecastsample:231322?Acfjustedsample:20t42092Irtclucfedobser'i'aterts:7SRmtkteanSquaredError3.111817kteanAbsolutsError2.103155加職Ate.Percer?itError3240450TteilIrsq^lrtyCoeffiDEn-t9.355046BiasProportkjft0/D21S33VarianceProportiori0.W3422CovarianoeProportion0.97-4f*452CQ3203020502070208QI——SER01F-——72SE零均值化后所得數(shù)據(jù)如下:

3.9575-5.5425-5.5425-5.0425-6.5425-6.54250.45750.6575-0.54250.4575-1.04-2.540.957-2.04-2.540.957-0.04-2.542.4573.95725255252552525552.9575.4573.4571.457-0.540.9570.9571.9570.957-0.54555525555525-1.34-1.04-0.34-1.040.4574.9573.457-7.54-3.54-3.54252525255552525251.457-0.042.9574.2572.4572.4572.4573.4572.4574.457525555555554.9573.9572.757-2.54-2.54-2.54-3.042.9575.4572.957555252525255552.0571.4570.457-1.04-6.541.9571.9571.9571.457-0.545552525555525-7.04-2.54-3.54-2.944.4571.457-0.54-3.04-5.54-3.54252525255525252525模型擬合1使用Eviews6.0軟件對(duì)模型ARMA(2n,2n-1)從n=1起進(jìn)行擬合,改變階數(shù)時(shí)剩余平方和變化列表如下:ARMA(6,5)ARMA(4,3)ARMA(2,1)576.3910655.0604496.3023由表可知:當(dāng)n=2時(shí)的剩余平方和大于n=1時(shí)的剩余平方和,從n=1之后階數(shù)增加而模型的剩余平方和不再顯著減小,因此ARMA(2,1)是適合的。模型適應(yīng)性檢驗(yàn)擬合ARMA(2,1)模型,輸出的模型適應(yīng)性檢驗(yàn)Q統(tǒng)計(jì)量為L(zhǎng)(74)?Q相伴概率(p值)87.02300.5341612.7560.690前8期的殘差自相關(guān)的整體的心檢驗(yàn)的相伴概率(p值)大于0.05,表明ARMA(2,1)模型是合適的。殘差自相關(guān)如下圖所示,滯后兩期的殘差自相關(guān)函數(shù)小于L96/yN=0.228,殘差自相關(guān)檢驗(yàn)也表明ARMA(2,1)模型是適合的。

Date:12/03713Time:16:09Sample:20132092Includedobservations:72AutocorrelationPartialCorrelationACFAC€l-StatProb11111110.0320.0320.07030.7301[11112-0.053-0.0540.29000.36511113-0.0010.0030.29000.9621□11匚14-0.123-0.1261.47570.0311匚1|匚15-0.200-0.1954.64540.4611I11]160.0810.0305.16900.5221111170.0440.0205.33020.6201□11□Ia0.1430.1437.02300.5341□112i90.1260.0838.36720.4981[1|E110-0.065-0.0818.72660.5581111111-0.0410.000S.B7510.6331匚1IE112-0.161-0.U911.16&0.5151C1r1113-0.100-0.02712.0640.5221111140.0200.01312.1010.59S11111150.0610.004124470.64511111160.0570.02312.75&0.6901]111170.073-0.01013.2690.71S1匚1iE110-0.123-0.12414.7720.6781[11119-0.059-0.01015.1280.7141111120-0.046-0.00915.3430.7561匚1iE121-0.149-0.10017.6570.6711111220.011-0.01017.6710.725111I11230.064-0.03518.1120.7511111240.013-0.01618.1300.79711111250.037-0.005182870.330111111260.04&0.03218.5100.0561]11□I270.0310.17719.2960.359|E1iE128-0.124-0.12321.1520.31911111129-0.0170.03721.1070.052111iE130-0.030-0.07421.3750.37611l11-0.004-0.026213780.90211111320.0060.026213030.923對(duì)于ARMA(2,1)模型,由P-W方法已無(wú)更低階模型,故對(duì)序列作ARMA(2,1)建模分析如下:DepencfentVariable:SER01Method:LeastSquares□ate:12/17/13Time:22:15Samplefadjusted):20152036Includedobservations:72afteradjustmentsConvergenceachievedafter10iterationsMABackcast2014VariableCoefficientStd.Errort-StatisticProb.AR⑴1.2104930.2000476.0510590.0000AR⑵-0.40621S0.1362n-2.9021360.0040MA(1)-0.6940620.19S246-3.5010180.0003R-squared0366S2SMeandependentvar0.1158S3AdjustedR-squared0.348470S.D.dependentvar3.191351S.E.ofregression2.575976Akaikeinfocriterion4.771103Sumsquaredresid457.0601Schwa

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論