版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
6.3Many-electronatoms1TheSchr?dingerequationofmany-electronatoms(Born-Oppenheimer
Approximation)Unfortunately,precisesolutionsarenotavailablethroughtheSchr?dingerequation,evenforthesimplestmany-electron,helium,because6.3Many-electronatoms1The1
⑴IndependentparticlemodelTheSchr?dingerequationSeparationofvariables⑴IndependentparticlemodelT2
⑵MeanfieldmodelAnelectronatadistancerfromthenucleusexperiencesaCoulombicrepulsionfromalltheelectronswithinasphereofradiusrandwhichisequivalenttoapointnegativechargelocatedonthenucleus.,
n=1,2,3,……⑵MeanfieldmodelAnelectro3Symmetric,Bosons
Antisymmetric,Fermions
⑵ThePauliprinciple
Allelectronicwavefunctionsmustbeantisymmetricundertheinterchangeofanytwoelectrons.2IdenticalparticlesandthePauliprinciple⑴IdenticalparticlesIdenticalparticlescannotbedistinguishedbymeansofanyintrinsicproperties.Symmetric,BosonsAntisymmetri4⑶Slaterdeterminant—Normalizationconstant(i)(ii)Notwoelectronsinanatomcanhavethesamevaluesforallfourquantumnumbers.⑶Slaterdeterminant—Normaliz5
4Electronconfigurations⑴ThePauliexclusionprincipleNotwoelectronsinanatomcanhavethesamevaluesforallfourquantumnumbers.⑵Groundstateelectronconfiguration—Aufbauprinciple4Electronconfigurations⑴T6⑶Hund’sruleElectronsoccupytheorbitalsofasubshellsinglyuntileachorbitalhasoneelectron.p6,d10,f14
p3,d5,f7
p0,d0,f0⑶Hund’srulep6,d10,f14 7⑵Atomicunits1a.umass=themassofelectronm=9.109×1028g1a.ucharge=thechargeofprotone=1.602×10-19C1a.ulength=Bohrradius1a.uenergy=e2/a0=27.2eVTheH2+hastwoprotonsandoneelectronandcanbedescribedusingtheSchr?dingerequation5Molecules5.1Hydrogen
Molecule
Ion(H2+)⑴TheSchr?dingerequationofH2+⑵Atomicunits1a.umass=the8⑶TheSchr?dingerequationofH2+ina.u①TheHamiltoniana.u②Schr?dingerequation⑷Thevariationtheorem①Thevariationtheoremforalinearexpansion⑶TheSchr?dingerequationof9①TheestimatedwavefunctionTheestimatedwavefunctionhastosatisfysomeconditions.NotethatwehavetousethecorrectHamiltonianforthesystem,butwedonotknowhowtosolvetheSchr?dingerequationforthisHamiltonian.Thevariationtheoremtellsusthat:<E>ETheexpectationvalueoftheenergyisalwayshigherthanthecorrectresult.
MolecularOrbital--aLinearCombinationofAtomicOrbitalsLCAO-MO①Theestimatedwavefunction10②Expectationvalueoftheenergy〈E〉Theproblemisamaximum-minimumproblemincalculus.Wemusthave:③Thewavefunction⑸ThesolutionofSchrodingerequationofH2+②Expectationvalueoftheen11LCAO-MOR→∞,ra→∞,①TheestimatedwavefunctionIfR→∞,ra→∞,thenLCAO-MOR→∞,ra→∞,①Theesti12②TheenergyofH2+②TheenergyofH2+13Alltheintegralsabovecaninprinciplebeevaluated.Weknowthefunctionsandtheoperator.Wewilljustgivethemnames:soTheseequationsarecalledlinearhomogeneousequations.Alltheintegralsabovecanin14TheseculardeterminantHaa=Hbb,
Hab=Hba,
Sab=Sba,and
c1=c2
Theimportantquestioniswhetherthereisasolutionotherthanthetrivialsolution.Thereis.Thewavefunctiondisappears(thetrivialsolution)forallvaluesof<E>exceptforthevaluesof<E>thatsatisfythedeterminantequation:
c1=-c2TheseculardeterminantHaa=Hbb15③ApproximatewavefunctionsolvetheequationforE1NormalizationsolvetheequationforE2SoNormalization③Approximatewavefunctionsol16④TheintegralsSab,HaaandHab
(i)Sab—theoverlapintegralR0,soSab0.IfR=0,Sab=1;R=∞,Sab=0.④TheintegralsSab,HaaandH17
(ii)Haa—Coulombintegral(ii)Haa—Coulombintegral18(iii)Hab—exchangeintegral(integral)R>0,soHab<0,HabR↑,|Hab|↓,Sab<<1,E1=Haa+Hab=+
,E2=Haa-Hab=-
HaaEa,soE1=Ea+
,E2=Ea-
(iii)Hab—exchangeintegral(19⑤Discussion(i)Theenergyof1and2Thecalculatedandexperimentalmolecularpotentialenergycurvesforahydrogenmolecule-ion.(ii)Bondingorbital1⑤Discussion(i)Theenergyof20Theelectrondensitycalculatedbyformingthesquareofthewavefunction.Notetheaccumulationofelectrondensityintheinternuclearregion.Theboundarysurfaceofa(orbitalenclosestheregionwheretheelectronsthatoccupytheorbitalaremostlikelytobefound.Notethattheorbitalhascylindricalsymmetry.Theelectrondensitycalculate21(iii)Antibondingorbital2(iii)Antibondingorbital222Apartialexplanationoftheoriginofbondingandantibondingeffects.(a)Inabondingorbital,thenucleiareattractedtotheaccumulationofelectrondensityintheinternuclearregion.(b)Inanantibondingorbital,thenucleiareattractedtoanaccumulationofelectrondensityoutsidetheinternuclearregion.Apartialexplanationoftheo235.2.Molecularorbitaltheory(MOtheory)1.ThemolecularHamiltonianAmoleculeconsistsofnumberofelectronsandnuclei.ThemolecularHamiltonianoperator
hasacomplicatedform.
=(1,2,N):(WithintheBorn--Oppenheimerapproximation)MainapproximationofabinitioMOtheory
theBorn--OppenheimerapproximationTheorbitalapproximationNon-relativityapproximation5.2.Molecularorbitaltheory242.Themolecularwavefunctions(molecularorbitals)Solet'sconsiderasimplerproblem,involvingtheone-electronhamiltonianSeparationofvariables(1,2,3…N)2.Themolecularwavefunction25(1,2,…,N)=det{(1)(1)(2)(2)…(N)(N)}3.Variationalparameter,orD=C?CDiscalledthedensitymatrix,aproductofAO--MOcoefficientmatrices(1,2,…,N)=det{(1)(1)(2)264.Hartree-FockequationsLetslookatageneralexampleoffunctionalvariationWritingtheenergyaswewantE=0,soThus4.Hartree-FockequationsLets27Itisclearthatthiscanbewrittenasamatrixproduct,andisinfactaneigenvalueequationintheform
Hc=ScEwecanrewritetheHartree-FockequationsasUsingthefactthat
isdiagonal,thiscanbewrittenasthematrixproduct
FC=SC
www.adi.uam.es\Docs\Knowledge\Fundamental_Theory\hf\hf.htmlItisclearthatthiscanbew28CapabilitiesofabinitioquantumchemistryCancalculatewavefunctionsanddetaileddescriptionsofmolecularorbitalsCancalculateatomiccharges,dipolemoments,multipolemoments,polarisabilities,etc.Cancalculatevibrationalfrequencies,IRandRamanintensities,NMRchemicalshiftsCancalculateionisationenergiesandelectronaffinitiesCanincludetheelectrostaticeffectsonsolvationCancalculatethegeometriesandenergiesofequilibriumstructures,transitionstructures,intermediates,andneutralandchargedspeciesCancalculategroundandexcitedstatesCanhandleanyelectronconfigurationCanhandleanyelementCanoptimisegeometriesCapabilitiesofabinitioquan295.3TheHuckelMoleculorOrbitalmethod(HMO)HMOdealwithconjugatedmolecules.Butadiene,e.g.:61s+4(1s22s22px12py12pz0)=26AOHMOapproximation:4pz.Inhisapproach,Theorbitalsaretreatedseparatelyfromtheorbitals,andthelatterformarigidframeworkthatdeterminetheshapeofthemolecule.⑴HuckelapproximationIHMOissuggestedbyEricHückelin1931.5.3TheHuckelMoleculorOrb30Butadiene4pzofCatomsButadiene4pzofCatoms31Theenergyandcoefficientssatisfythefollowingequations:let
Thebestmolecularorbitalsarethosewhichminimisethetotalenergy.Thisisachievedbyimposingthecondition::Theenergyandcoefficientss32⑵HuckelapproximationII:non-trivialsolutions:Thesevalues,calledthenon-trivialsolutionstotheseequations,occurwhen:⑵HuckelapproximationII:no33letThisdeterminantcanbeeasilymultipliedouttogive:x4-3x2+1=0letThisdeterminantcanbeeas341=0.37171+0.60152+0.60153+0.371742=0.60151+0.37172—0.37173—0.601543=0.60151—0.37172—0.37173+0.601544=0.37171—0.60152+0.60153—0.37174<0,soE1<E2<E3<E4WeobtainfourvaluesofE,whichisreasonablesinceweexpecttofindfourmolecularorbitals.1=0.37171+0.60152+0.60153+35DelocalizationenergyTotalenergyE=2E1+2E2=2×(+1.62)+2×(+0.62)=4+4.48EnergylevelsOccupiedorbitalUnfilledorbitalC=C—C=CE’=4+4E-E’=0.48FrontierorbitalsThehighestoccupiedmolecularorbital,HOMOThelowestunfilledmolecularorbital,LUMOThefrontierorbitalsareimportantbecausetheyarelargelyresponsibleformanyofthechemicalandspectroscopicpropertiesofthemolecule.DelocalizationenergyEnergyl366.3Many-electronatoms1TheSchr?dingerequationofmany-electronatoms(Born-Oppenheimer
Approximation)Unfortunately,precisesolutionsarenotavailablethroughtheSchr?dingerequation,evenforthesimplestmany-electron,helium,because6.3Many-electronatoms1The37
⑴IndependentparticlemodelTheSchr?dingerequationSeparationofvariables⑴IndependentparticlemodelT38
⑵MeanfieldmodelAnelectronatadistancerfromthenucleusexperiencesaCoulombicrepulsionfromalltheelectronswithinasphereofradiusrandwhichisequivalenttoapointnegativechargelocatedonthenucleus.,
n=1,2,3,……⑵MeanfieldmodelAnelectro39Symmetric,Bosons
Antisymmetric,Fermions
⑵ThePauliprinciple
Allelectronicwavefunctionsmustbeantisymmetricundertheinterchangeofanytwoelectrons.2IdenticalparticlesandthePauliprinciple⑴IdenticalparticlesIdenticalparticlescannotbedistinguishedbymeansofanyintrinsicproperties.Symmetric,BosonsAntisymmetri40⑶Slaterdeterminant—Normalizationconstant(i)(ii)Notwoelectronsinanatomcanhavethesamevaluesforallfourquantumnumbers.⑶Slaterdeterminant—Normaliz41
4Electronconfigurations⑴ThePauliexclusionprincipleNotwoelectronsinanatomcanhavethesamevaluesforallfourquantumnumbers.⑵Groundstateelectronconfiguration—Aufbauprinciple4Electronconfigurations⑴T42⑶Hund’sruleElectronsoccupytheorbitalsofasubshellsinglyuntileachorbitalhasoneelectron.p6,d10,f14
p3,d5,f7
p0,d0,f0⑶Hund’srulep6,d10,f14 43⑵Atomicunits1a.umass=themassofelectronm=9.109×1028g1a.ucharge=thechargeofprotone=1.602×10-19C1a.ulength=Bohrradius1a.uenergy=e2/a0=27.2eVTheH2+hastwoprotonsandoneelectronandcanbedescribedusingtheSchr?dingerequation5Molecules5.1Hydrogen
Molecule
Ion(H2+)⑴TheSchr?dingerequationofH2+⑵Atomicunits1a.umass=the44⑶TheSchr?dingerequationofH2+ina.u①TheHamiltoniana.u②Schr?dingerequation⑷Thevariationtheorem①Thevariationtheoremforalinearexpansion⑶TheSchr?dingerequationof45①TheestimatedwavefunctionTheestimatedwavefunctionhastosatisfysomeconditions.NotethatwehavetousethecorrectHamiltonianforthesystem,butwedonotknowhowtosolvetheSchr?dingerequationforthisHamiltonian.Thevariationtheoremtellsusthat:<E>ETheexpectationvalueoftheenergyisalwayshigherthanthecorrectresult.
MolecularOrbital--aLinearCombinationofAtomicOrbitalsLCAO-MO①Theestimatedwavefunction46②Expectationvalueoftheenergy〈E〉Theproblemisamaximum-minimumproblemincalculus.Wemusthave:③Thewavefunction⑸ThesolutionofSchrodingerequationofH2+②Expectationvalueoftheen47LCAO-MOR→∞,ra→∞,①TheestimatedwavefunctionIfR→∞,ra→∞,thenLCAO-MOR→∞,ra→∞,①Theesti48②TheenergyofH2+②TheenergyofH2+49Alltheintegralsabovecaninprinciplebeevaluated.Weknowthefunctionsandtheoperator.Wewilljustgivethemnames:soTheseequationsarecalledlinearhomogeneousequations.Alltheintegralsabovecanin50TheseculardeterminantHaa=Hbb,
Hab=Hba,
Sab=Sba,and
c1=c2
Theimportantquestioniswhetherthereisasolutionotherthanthetrivialsolution.Thereis.Thewavefunctiondisappears(thetrivialsolution)forallvaluesof<E>exceptforthevaluesof<E>thatsatisfythedeterminantequation:
c1=-c2TheseculardeterminantHaa=Hbb51③ApproximatewavefunctionsolvetheequationforE1NormalizationsolvetheequationforE2SoNormalization③Approximatewavefunctionsol52④TheintegralsSab,HaaandHab
(i)Sab—theoverlapintegralR0,soSab0.IfR=0,Sab=1;R=∞,Sab=0.④TheintegralsSab,HaaandH53
(ii)Haa—Coulombintegral(ii)Haa—Coulombintegral54(iii)Hab—exchangeintegral(integral)R>0,soHab<0,HabR↑,|Hab|↓,Sab<<1,E1=Haa+Hab=+
,E2=Haa-Hab=-
HaaEa,soE1=Ea+
,E2=Ea-
(iii)Hab—exchangeintegral(55⑤Discussion(i)Theenergyof1and2Thecalculatedandexperimentalmolecularpotentialenergycurvesforahydrogenmolecule-ion.(ii)Bondingorbital1⑤Discussion(i)Theenergyof56Theelectrondensitycalculatedbyformingthesquareofthewavefunction.Notetheaccumulationofelectrondensityintheinternuclearregion.Theboundarysurfaceofa(orbitalenclosestheregionwheretheelectronsthatoccupytheorbitalaremostlikelytobefound.Notethattheorbitalhascylindricalsymmetry.Theelectrondensitycalculate57(iii)Antibondingorbital2(iii)Antibondingorbital258Apartialexplanationoftheoriginofbondingandantibondingeffects.(a)Inabondingorbital,thenucleiareattractedtotheaccumulationofelectrondensityintheinternuclearregion.(b)Inanantibondingorbital,thenucleiareattractedtoanaccumulationofelectrondensityoutsidetheinternuclearregion.Apartialexplanationoftheo595.2.Molecularorbitaltheory(MOtheory)1.ThemolecularHamiltonianAmoleculeconsistsofnumberofelectronsandnuclei.ThemolecularHamiltonianoperator
hasacomplicatedform.
=(1,2,N):(WithintheBorn--Oppenheimerapproximation)MainapproximationofabinitioMOtheory
theBorn--OppenheimerapproximationTheorbitalapproximationNon-relativityapproximation5.2.Molecularorbitaltheory602.Themolecularwavefunctions(molecularorbitals)Solet'sconsiderasimplerproblem,involvingtheone-electronhamiltonianSeparationofvariables(1,2,3…N)2.Themolecularwavefunction61(1,2,…,N)=det{(1)(1)(2)(2)…(N)(N)}3.Variationalparameter,orD=C?CDiscalledthedensitymatrix,aproductofAO--MOcoefficientmatrices(1,2,…,N)=det{(1)(1)(2)624.Hartree-FockequationsLetslookatageneralexampleoffunctionalvariationWritingtheenergyaswewantE=0,soThus4.Hartree-FockequationsLets63Itisclearthatthiscanbewrittenasamatrixproduct,andisinfactaneigenvalueequationintheform
Hc=ScEwecanrewritetheHartree-FockequationsasUsingthefactthat
isdiagonal,thiscanbewrittenasthematrixproduct
FC=SC
www.adi.uam.es\Docs\Knowledge\Fundamental_Theory\hf\hf.htmlItisclearthatthiscanbew64CapabilitiesofabinitioquantumchemistryCancalculatewavefunctionsanddetaileddescriptionsofmolecularorbitalsCancalculateatomiccharges,dipolemoments,multipolemoments,polarisabilities,etc.Cancalculatevibrationalfrequencies,IRandRamanintensities,NMRchemicalshiftsCancalculateionisationenergiesandelectronaffinitiesCanincludetheelectrostaticeffectsonsolvationCancalculatethegeometriesandenergiesofequilibriumstructures,transitionstructures,intermediates,andneutralandchargedspeciesCancalculategroundandexcitedstatesCanhandleanyelectronconfigurationCanhandleanyelementCanoptimisegeometriesCapabilitiesofabiniti
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院老人健康監(jiān)測(cè)人員激勵(lì)制度
- 養(yǎng)老院環(huán)境衛(wèi)生制度
- 辦公室員工健康與安全管理制度
- 邊防協(xié)管員培訓(xùn)制度
- 試析民商事仲裁中的證據(jù)制度
- 行政單位廉潔自律制度
- 藥品不良事件上報(bào)制度
- 股東會(huì)議制度
- 散文知識(shí)教學(xué)課件
- 2026年社會(huì)政策理解政策法規(guī)知識(shí)測(cè)試題庫(kù)
- 韭菜的自我修養(yǎng)(李笑來(lái))-2018
- 高一上學(xué)期期末考試英語(yǔ)試卷及答案兩套(附聽(tīng)力錄音稿)
- 勞務(wù)派遣標(biāo)書(shū)服務(wù)方案(全覆蓋版本)
- 視覺(jué)傳播概論 課件全 任悅 第1-12章 視覺(jué)傳播的研究- 視覺(jué)傳播中的倫理與法規(guī)
- 溝通技巧與情商提升
- 2024屆新疆維吾爾自治區(qū)烏魯木齊市高三上學(xué)期第一次質(zhì)量監(jiān)測(cè)生物試題【含答案解析】
- 公司基層黨建問(wèn)題清單
- 《廣西歷史建筑保護(hù)修繕及檢測(cè)技術(shù)標(biāo)準(zhǔn)》
- 福州港羅源灣港區(qū)碧里作業(yè)區(qū)4號(hào)泊位擴(kuò)能改造工程環(huán)境影響報(bào)告
- 八年級(jí)物理下冊(cè)《滑輪》練習(xí)題及答案-人教版
- 江蘇省建設(shè)工程施工項(xiàng)目部關(guān)鍵崗位人員變更申請(qǐng)表優(yōu)質(zhì)資料
評(píng)論
0/150
提交評(píng)論