版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第五章樹(shù)樹(shù)是一類重要的非線性數(shù)據(jù)結(jié)構(gòu),是以分支關(guān)系定義的層次結(jié)構(gòu)5.1樹(shù)的定義定義定義:樹(shù)(tree)是n(n>0)個(gè)結(jié)點(diǎn)的有限集T,其中:有且僅有一個(gè)特定的結(jié)點(diǎn),稱為樹(shù)的根(root)當(dāng)n>1時(shí),其余結(jié)點(diǎn)可分為m(m>0)個(gè)互不相交的有限集T1,T2,……Tm,其中每一個(gè)集合本身又是一棵樹(shù),稱為根的子樹(shù)(subtree)特點(diǎn):樹(shù)中至少有一個(gè)結(jié)點(diǎn)——根樹(shù)中各子樹(shù)是互不相交的集合第五章樹(shù)樹(shù)是一類重要的非線性數(shù)據(jù)結(jié)構(gòu),是以A只有根結(jié)點(diǎn)的樹(shù)ABCDEFGHIJKLM有子樹(shù)的樹(shù)根子樹(shù)A只有根結(jié)點(diǎn)的樹(shù)ABCDEFGHIJKLM有子樹(shù)的樹(shù)根子樹(shù)基本術(shù)語(yǔ)結(jié)點(diǎn)(node)——表示樹(shù)中的元素,包括數(shù)據(jù)項(xiàng)及若干指向其子樹(shù)的分支結(jié)點(diǎn)的度(degree)——結(jié)點(diǎn)擁有的子樹(shù)數(shù)葉子(leaf)——度為0的結(jié)點(diǎn)孩子(child)——結(jié)點(diǎn)子樹(shù)的根稱為該結(jié)點(diǎn)的孩子雙親(parents)——孩子結(jié)點(diǎn)的上層結(jié)點(diǎn)叫該結(jié)點(diǎn)的~兄弟(sibling)——同一雙親的孩子樹(shù)的度——一棵樹(shù)中最大的結(jié)點(diǎn)度數(shù)結(jié)點(diǎn)的層次(level)——從根結(jié)點(diǎn)算起,根為第一層,它的孩子為第二層……深度(depth)——樹(shù)中結(jié)點(diǎn)的最大層次數(shù)森林(forest)——m(m0)棵互不相交的樹(shù)的集合基本術(shù)語(yǔ)ABCDEFGHIJKLM結(jié)點(diǎn)A的度:3結(jié)點(diǎn)B的度:2結(jié)點(diǎn)M的度:0葉子:K,L,F(xiàn),G,M,I,J結(jié)點(diǎn)A的孩子:B,C,D結(jié)點(diǎn)B的孩子:E,F(xiàn)結(jié)點(diǎn)I的雙親:D結(jié)點(diǎn)L的雙親:E結(jié)點(diǎn)B,C,D為兄弟結(jié)點(diǎn)K,L為兄弟樹(shù)的度:3結(jié)點(diǎn)A的層次:1結(jié)點(diǎn)M的層次:4樹(shù)的深度:4結(jié)點(diǎn)F,G為堂兄弟結(jié)點(diǎn)A是結(jié)點(diǎn)F,G的祖先ABCDEFGHIJKLM結(jié)點(diǎn)A的度:3葉子:K,L,F(xiàn),G5.2二叉樹(shù)定義定義:二叉樹(shù)是n(n0)個(gè)結(jié)點(diǎn)的有限集,它或?yàn)榭諛?shù)(n=0),或由一個(gè)根結(jié)點(diǎn)和兩棵分別稱為左子樹(shù)和右子樹(shù)的互不相交的二叉樹(shù)構(gòu)成特點(diǎn)每個(gè)結(jié)點(diǎn)至多有二棵子樹(shù)(即不存在度大于2的結(jié)點(diǎn))二叉樹(shù)的子樹(shù)有左、右之分,且其次序不能任意顛倒基本形態(tài)A只有根結(jié)點(diǎn)的二叉樹(shù)空二叉樹(shù)AB右子樹(shù)為空AB左子樹(shù)為空ABC左、右子樹(shù)均非空5.2二叉樹(shù)A只有根結(jié)點(diǎn)空二叉樹(shù)AB右子樹(shù)為空AB左子樹(shù)二叉樹(shù)性質(zhì)性質(zhì)1:證明:用歸納法證明之
i=1時(shí),只有一個(gè)根結(jié)點(diǎn),是對(duì)的假設(shè)對(duì)所有j(1j<i)命題成立,即第j層上至多有個(gè)結(jié)點(diǎn)那么,第i-1層至多有個(gè)結(jié)點(diǎn)又二叉樹(shù)每個(gè)結(jié)點(diǎn)的度至多為2第i層上最大結(jié)點(diǎn)數(shù)是第i-1層的2倍,即故命題得證性質(zhì)2:深度為k的二叉樹(shù)至多有個(gè)結(jié)點(diǎn)(k1)證明:由性質(zhì)1,可得深度為k的二叉樹(shù)最大結(jié)點(diǎn)數(shù)是二叉樹(shù)性質(zhì)證明:用歸納法證明之性質(zhì)2:深度為k的二叉樹(shù)至多有性質(zhì)3:對(duì)任何一棵二叉樹(shù)T,如果其終端結(jié)點(diǎn)數(shù)為n0,度為2的結(jié)點(diǎn)數(shù)為n2,則n0=n2+1證明:n1為二叉樹(shù)T中度為1的結(jié)點(diǎn)數(shù)因?yàn)椋憾鏄?shù)中所有結(jié)點(diǎn)的度均小于或等于2所以:其結(jié)點(diǎn)總數(shù)n=n0+n1+n2
又二叉樹(shù)中,除根結(jié)點(diǎn)外,其余結(jié)點(diǎn)都只有一個(gè)分支進(jìn)入設(shè)B為分支總數(shù),則n=B+1又:分支由度為1和度為2的結(jié)點(diǎn)射出,B=n1+2n2
于是,n=B+1=n1+2n2+1=n0+n1+n2n0=n2+1性質(zhì)3:對(duì)任何一棵二叉樹(shù)T,如果其終端結(jié)點(diǎn)數(shù)為n0,度為2的幾種特殊形式的二叉樹(shù)滿二叉樹(shù)定義:特點(diǎn):每一層上的結(jié)點(diǎn)數(shù)都是最大結(jié)點(diǎn)數(shù)完全二叉樹(shù)定義:深度為k,有n個(gè)結(jié)點(diǎn)的二叉樹(shù)當(dāng)且僅當(dāng)其每一個(gè)結(jié)點(diǎn)都與深度為k的滿二叉樹(shù)中編號(hào)從1至n的結(jié)點(diǎn)一一對(duì)應(yīng)時(shí),稱為~特點(diǎn)葉子結(jié)點(diǎn)只可能在層次最大的兩層上出現(xiàn)對(duì)任一結(jié)點(diǎn),若其右分支下子孫的最大層次為l,則其左分支下子孫的最大層次必為l或l+1性質(zhì)性質(zhì)4:幾種特殊形式的二叉樹(shù)特點(diǎn):每一層上的結(jié)點(diǎn)數(shù)都是最大結(jié)點(diǎn)數(shù)1231145891213671014151231145891267101234567123456123114589121367101415123114589性質(zhì)5:如果對(duì)一棵有n個(gè)結(jié)點(diǎn)的完全二叉樹(shù)的結(jié)點(diǎn)按層序編號(hào),則對(duì)任一結(jié)點(diǎn)i(1in),有:(1)如果i=1,則結(jié)點(diǎn)i是二叉樹(shù)的根,無(wú)雙親;如果i>1,則其雙親是i/2(2)如果2i>n,則結(jié)點(diǎn)i無(wú)左孩子;如果2in,則其左孩子是2i(3)如果2i+1>n,則結(jié)點(diǎn)i無(wú)右孩子;如果2i+1n,則其右孩子是2i+1性質(zhì)5:如果對(duì)一棵有n個(gè)結(jié)點(diǎn)的完全二叉樹(shù)的結(jié)點(diǎn)按層序編號(hào),則5.3樹(shù)的存儲(chǔ)結(jié)構(gòu)樹(shù)的存儲(chǔ)結(jié)構(gòu)雙親表示法實(shí)現(xiàn):定義結(jié)構(gòu)數(shù)組存放樹(shù)的結(jié)點(diǎn),每個(gè)結(jié)點(diǎn)含兩個(gè)域:數(shù)據(jù)域:存放結(jié)點(diǎn)本身信息雙親域:指示本結(jié)點(diǎn)的雙親結(jié)點(diǎn)在數(shù)組中位置特點(diǎn):找雙親容易,找孩子難typedefstructnode{datatypedata;intparent;}JD;JDt[M];5.3樹(shù)的存儲(chǔ)結(jié)構(gòu)typedefstructnodeabcdefhgiacdefghib012235551096012345789dataparent0號(hào)單元不用或存結(jié)點(diǎn)個(gè)數(shù)如何找孩子結(jié)點(diǎn)abcdefhgiacdefghib012235551096孩子表示法多重鏈表:每個(gè)結(jié)點(diǎn)有多個(gè)指針域,分別指向其子樹(shù)的根結(jié)點(diǎn)同構(gòu):結(jié)點(diǎn)的指針個(gè)數(shù)相等,為樹(shù)的度D結(jié)點(diǎn)不同構(gòu):結(jié)點(diǎn)指針個(gè)數(shù)不等,為該結(jié)點(diǎn)的度ddatachild1child2……….childDdatadegreechild1child2……….childd孩子鏈表:每個(gè)結(jié)點(diǎn)的孩子結(jié)點(diǎn)用單鏈表存儲(chǔ),再用含n個(gè)元素的結(jié)構(gòu)數(shù)組指向每個(gè)孩子鏈表孩子結(jié)點(diǎn):typedefstructnode{intchild;//該結(jié)點(diǎn)在表頭數(shù)組中下標(biāo)structnode*next;//指向下一孩子結(jié)點(diǎn)}JD;表頭結(jié)點(diǎn):typedefstructtnode{datatypedata;//數(shù)據(jù)域structnode*fc;//指向第一個(gè)孩子結(jié)點(diǎn)}TD;TDt[M];//t[0]不用孩子表示法datachild1child2abcdefhgi6012345789acdefghibdatafc23^45^^978^6^^^^^如何找雙親結(jié)點(diǎn)abcdefhgi6012345789acdefghibda帶雙親的孩子鏈表612345789acdefghibdatafc23459786^^^^^^^^^012235551parentabcdefhgi帶雙親的孩子鏈表612345789acdefghibdata孩子兄弟表示法(二叉樹(shù)表示法)實(shí)現(xiàn):用二叉鏈表作樹(shù)的存儲(chǔ)結(jié)構(gòu),鏈表中每個(gè)結(jié)點(diǎn)的兩個(gè)指針域分別指向其第一個(gè)孩子結(jié)點(diǎn)和下一個(gè)兄弟結(jié)點(diǎn)特點(diǎn)操作容易破壞了樹(shù)的層次typedefstructnode{datatypedata;structnode*fch,*nsib;}JD;abcdefhgiabcdefghi^^^^^^^^^^孩子兄弟表示法(二叉樹(shù)表示法)typedefstruct二叉樹(shù)的存儲(chǔ)結(jié)構(gòu)順序存儲(chǔ)結(jié)構(gòu)實(shí)現(xiàn):按滿二叉樹(shù)的結(jié)點(diǎn)層次編號(hào),依次存放二叉樹(shù)中的數(shù)據(jù)元素特點(diǎn):結(jié)點(diǎn)間關(guān)系蘊(yùn)含在其存儲(chǔ)位置中浪費(fèi)空間,適于存滿二叉樹(shù)和完全二叉樹(shù)abcdefgabcde0000fg1234567891011二叉樹(shù)的存儲(chǔ)結(jié)構(gòu)abcdefgabc鏈?zhǔn)酱鎯?chǔ)結(jié)構(gòu)二叉鏈表typedefstructnode{datatypedata;structnode*lchild,*rchild;}JD;lchilddatarchildABCDEFG在n個(gè)結(jié)點(diǎn)的二叉鏈表中,有n+1個(gè)空指針域ABCDEFG^^^^^^^^鏈?zhǔn)酱鎯?chǔ)結(jié)構(gòu)typedefstructnodel三叉鏈表typedefstructnode{datatypedata;structnode*lchild,*rchild,*parent;}JD;lchilddataparentrchildABCDEFGABCDEFG^^^^^^^^^三叉鏈表typedefstructnodelchi樹(shù)與二叉樹(shù)轉(zhuǎn)換ACBED樹(shù)ABCDE二叉樹(shù)A^^BC^D^^E^A^^BC^D^^E^A^^BC^D^^E^對(duì)應(yīng)存儲(chǔ)存儲(chǔ)解釋解釋樹(shù)與二叉樹(shù)轉(zhuǎn)換ACBED樹(shù)ABCDE二叉樹(shù)A將樹(shù)轉(zhuǎn)換成二叉樹(shù)加線:在兄弟之間加一連線抹線:對(duì)每個(gè)結(jié)點(diǎn),除了其左孩子外,去除其與其余孩子之間的關(guān)系旋轉(zhuǎn):以樹(shù)的根結(jié)點(diǎn)為軸心,將整樹(shù)順時(shí)針轉(zhuǎn)45°ABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHI樹(shù)轉(zhuǎn)換成的二叉樹(shù)其右子樹(shù)一定為空將樹(shù)轉(zhuǎn)換成二叉樹(shù)ABCDEFGHIABCDEFGHIABCD將二叉樹(shù)轉(zhuǎn)換成樹(shù)加線:若p結(jié)點(diǎn)是雙親結(jié)點(diǎn)的左孩子,則將p的右孩子,右孩子的右孩子,……沿分支找到的所有右孩子,都與p的雙親用線連起來(lái)抹線:抹掉原二叉樹(shù)中雙親與右孩子之間的連線調(diào)整:將結(jié)點(diǎn)按層次排列,形成樹(shù)結(jié)構(gòu)ABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHI將二叉樹(shù)轉(zhuǎn)換成樹(shù)ABCDEFGHIABCDEFGHIABCD森林轉(zhuǎn)換成二叉樹(shù)將各棵樹(shù)分別轉(zhuǎn)換成二叉樹(shù)將每棵樹(shù)的根結(jié)點(diǎn)用線相連以第一棵樹(shù)根結(jié)點(diǎn)為二叉樹(shù)的根,再以根結(jié)點(diǎn)為軸心,順時(shí)針旋轉(zhuǎn),構(gòu)成二叉樹(shù)型結(jié)構(gòu)ABCDEFGHIJABCDEFGHIJABCDEFGHIJABCDEFGHIJ森林轉(zhuǎn)換成二叉樹(shù)ABCDEFGHIJABCDEFGHIJAB二叉樹(shù)轉(zhuǎn)換成森林抹線:將二叉樹(shù)中根結(jié)點(diǎn)與其右孩子連線,及沿右分支搜索到的所有右孩子間連線全部抹掉,使之變成孤立的二叉樹(shù)還原:將孤立的二叉樹(shù)還原成樹(shù)ABCDEFGHIJABCDEFGHIJABCDEFGHIJABCDEFGHIJ二叉樹(shù)轉(zhuǎn)換成森林ABCDEFGHIJABCDEFGHIJAB5.4樹(shù)和二叉樹(shù)的遍歷樹(shù)的遍歷遍歷——按一定規(guī)律走遍樹(shù)的各個(gè)頂點(diǎn),且使每一頂點(diǎn)僅被訪問(wèn)一次,即找一個(gè)完整而有規(guī)律的走法,以得到樹(shù)中所有結(jié)點(diǎn)的一個(gè)線性排列常用方法先根(序)遍歷:先訪問(wèn)樹(shù)的根結(jié)點(diǎn),然后依次先根遍歷根的每棵子樹(shù)后根(序)遍歷:先依次后根遍歷每棵子樹(shù),然后訪問(wèn)根結(jié)點(diǎn)按層次遍歷:先訪問(wèn)第一層上的結(jié)點(diǎn),然后依次遍歷第二層,……第n層的結(jié)點(diǎn)5.4樹(shù)和二叉樹(shù)的遍歷ABCDEFGHIJKLMNO先序遍歷:后序遍歷:層次遍歷:ABEFIGCDHJKLNOMEIFGBCJKNOLMHDAABCDEFGHIJKLMNOABCDEFGHIJKLMNO先序遍歷:后序遍歷:層次遍歷:二叉樹(shù)的遍歷方法先序遍歷:先訪問(wèn)根結(jié)點(diǎn),然后分別先序遍歷左子樹(shù)、右子樹(shù)中序遍歷:先中序遍歷左子樹(shù),然后訪問(wèn)根結(jié)點(diǎn),最后中序遍歷右子樹(shù)后序遍歷:先后序遍歷左、右子樹(shù),然后訪問(wèn)根結(jié)點(diǎn)按層次遍歷:從上到下、從左到右訪問(wèn)各結(jié)點(diǎn)DLRLDR、LRD、DLRRDL、RLD、DRL二叉樹(shù)的遍歷DLRLDR、LRD、DLRADBCDLRADLRDLR>B>>D>>CDLR先序遍歷序列:ABDC先序遍歷:ADBCDLRADBCLDRBLDRLDR>A>>D>>CLDR中序遍歷序列:BDAC中序遍歷:ADBCLDRADBCLRDLRDLRD>A>>D>>CLRD后序遍歷序列:DBCA后序遍歷:BADBCLR-+/a*b-efcd先序遍歷:中序遍歷:后序遍歷:層次遍歷:-+a*b-cd/ef-+a*b-cd/ef-+a*b-cd/ef-+a*b-cd/ef-+/a*b-efcd先序遍歷:中序遍歷:后序遍歷:層次遍歷voidpreorder(JD*bt){if(bt!=NULL){printf("%d\t",bt->data);preorder(bt->lchild);preorder(bt->rchild);}}主程序Pre(T)返回返回pre(TR);返回返回pre(TR);ACBDTBprintf(B);pre(TL);BTAprintf(A);pre(TL);ATDprintf(D);pre(TL);DTCprintf(C);pre(TL);C返回T>左是空返回pre(TR);T>左是空返回T>右是空返回T>左是空返回T>右是空返回pre(TR);先序序列:ABDCvoidpreorder(JD*bt)主程序Pre(T非遞歸算法ABCDEFGpiP->A(1)ABCDEFGpiP->AP->B(2)ABCDEFGpiP->AP->BP->C(3)p=NULLABCDEFGiP->AP->B訪問(wèn):C(4)非遞歸算法ABCDEFGpiP->A(1)ABCDEFGpipABCDEFGiP->A訪問(wèn):CB(5)ABCDEFGiP->AP->D訪問(wèn):CBp(6)ABCDEFGiP->AP->DP->E訪問(wèn):CBp(7)ABCDEFGiP->AP->D訪問(wèn):CBEp(8)pABCDEFGiP->A訪問(wèn):CB(5)ABCDEFGiABCDEFGiP->AP->DP->G訪問(wèn):CBEP=NULL(9)ABCDEFGiP->A訪問(wèn):CBEGDp(11)ABCDEFGiP->AP->F訪問(wèn):CBEGDp(12)ABCDEFGiP->AP->D訪問(wèn):CBEGp(10)ABCDEFGiP->AP->DP->G訪問(wèn):CBEP=ABCDEFGiP->A訪問(wèn):CBEGDFp=NULL(13)ABCDEFGi訪問(wèn):CBEGDFAp(14)ABCDEFGi訪問(wèn):CBEGDFAp=NULL(15)Ch5_4.cCh5_40.C后序遍歷非遞歸算法ABCDEFGiP->A訪問(wèn):CBEGDFp=NU遍歷算法應(yīng)用按先序遍歷序列建立二叉樹(shù)的二叉鏈表,已知先序序列為:ABCDEGF求二叉樹(shù)深度算法Ch5_5.cch5_6.cABCDEFGA^B^C^D^E^F^^G^Ch5_1.c統(tǒng)計(jì)二叉樹(shù)中葉子結(jié)點(diǎn)個(gè)數(shù)算法遍歷算法應(yīng)用求二叉樹(shù)深度算法Ch5_5.cABCDEFG5.5二叉樹(shù)的應(yīng)用哈夫曼樹(shù)(Huffman)——帶權(quán)路徑長(zhǎng)度最短的樹(shù)定義路徑:從樹(shù)中一個(gè)結(jié)點(diǎn)到另一個(gè)結(jié)點(diǎn)之間的分支構(gòu)成這兩個(gè)結(jié)點(diǎn)間的~路徑長(zhǎng)度:路徑上的分支數(shù)樹(shù)的路徑長(zhǎng)度:從樹(shù)根到每一個(gè)結(jié)點(diǎn)的路徑長(zhǎng)度之和樹(shù)的帶權(quán)路徑長(zhǎng)度:樹(shù)中所有帶權(quán)結(jié)點(diǎn)的路徑長(zhǎng)度之和Huffman樹(shù)——設(shè)有n個(gè)權(quán)值{w1,w2,……wn},構(gòu)造一棵有n個(gè)葉子結(jié)點(diǎn)的二叉樹(shù),每個(gè)葉子的權(quán)值為wi,則wpl最小的二叉樹(shù)叫~5.5二叉樹(shù)的應(yīng)用Huffman樹(shù)——設(shè)有n個(gè)權(quán)值{w1,例有4個(gè)結(jié)點(diǎn),權(quán)值分別為7,5,2,4,構(gòu)造有4個(gè)葉子結(jié)點(diǎn)的二叉樹(shù)abcd7524WPL=7*2+5*2+2*2+4*2=36dcab2475WPL=7*3+5*3+2*1+4*2=46abcd7524WPL=7*1+5*2+2*3+4*3=35例有4個(gè)結(jié)點(diǎn),權(quán)值分別為7,5,2,4,構(gòu)造有4個(gè)葉子構(gòu)造Huffman樹(shù)的方法——Huffman算法構(gòu)造Huffman樹(shù)步驟根據(jù)給定的n個(gè)權(quán)值{w1,w2,……wn},構(gòu)造n棵只有根結(jié)點(diǎn)的二叉樹(shù),令起權(quán)值為wj在森林中選取兩棵根結(jié)點(diǎn)權(quán)值最小的樹(shù)作左右子樹(shù),構(gòu)造一棵新的二叉樹(shù),置新二叉樹(shù)根結(jié)點(diǎn)權(quán)值為其左右子樹(shù)根結(jié)點(diǎn)權(quán)值之和在森林中刪除這兩棵樹(shù),同時(shí)將新得到的二叉樹(shù)加入森林中重復(fù)上述兩步,直到只含一棵樹(shù)為止,這棵樹(shù)即哈夫曼樹(shù)構(gòu)造Huffman樹(shù)的方法——Huffman算法例a7b5c2d4a7b5c2d46a7b5c2d4611a7b5c2d461118例a7b5c2d4a7b5c2d46a7b5c2d4611a例w={5,29,7,8,14,23,3,11}51429782331114297823113588715142923358111135819142923871511358192923148715292914871529113581923421135819234229148715295811358192342291487152958100例w={5,29,7,8,14,23,3,Huffman算法實(shí)現(xiàn)Ch5_8.c一棵有n個(gè)葉子結(jié)點(diǎn)的Huffman樹(shù)有2n-1個(gè)結(jié)點(diǎn)采用順序存儲(chǔ)結(jié)構(gòu)——一維結(jié)構(gòu)數(shù)組結(jié)點(diǎn)類型定義typedefstruct{intdata;intpa,lc,rc;}JD;Huffman算法實(shí)現(xiàn)Ch5_8.c一棵有n個(gè)葉子結(jié)點(diǎn)的Hulcdatarcpa12345670000000752400000000000000000(1)lcdatarcpa12345670000300752460000004000055000kx1=3,x2=4m1=2,m2=4(2)lcdatarcpa123456700003207524611000004500655600kx1=2,x2=5m1=5,m2=6(3)lcdatarcpa1234567000032175246111800004567655670kx1=1,x2=6m1=7,m2=11(4)Ch5_8.clcdatarcpa12Huffman樹(shù)應(yīng)用最佳判定樹(shù)等級(jí)分?jǐn)?shù)段比例ABCDE0~5960~6970~7980~8990~1000.050.150.400.300.10a<60a<90a<80a<70EYNDYNCYNBYNA70a<80a<60CYNBYNDYNEYNA80a<9060a<70EADECa<80a<70a<60a<90EYNDYNCYNBYNAHuffman樹(shù)應(yīng)用等級(jí)分?jǐn)?shù)段比例ABCDE0~5960~6Huffman編碼:數(shù)據(jù)通信用的二進(jìn)制編碼思想:根據(jù)字符出現(xiàn)頻率編碼,使電文總長(zhǎng)最短編碼:根據(jù)字符出現(xiàn)頻率構(gòu)造Huffman樹(shù),然后將樹(shù)中結(jié)點(diǎn)引向其左孩子的分支標(biāo)“0”,引向其右孩子的分支標(biāo)“1”;每個(gè)字符的編碼即為從根到每個(gè)葉子的路徑上得到的0、1序列例要傳輸?shù)淖址疍={C,A,S,T,;}
字符出現(xiàn)頻率w={2,4,2,3,3}CS3364224814T;A00110110T:00;:01A:10C:110S:111Huffman編碼:數(shù)據(jù)通信用的二進(jìn)制編碼例要傳輸?shù)淖址g碼:從Huffman樹(shù)根開(kāi)始,從待譯碼電文中逐位取碼。若編碼是“0”,則向左走;若編碼是“1”,則向右走,一旦到達(dá)葉子結(jié)點(diǎn),則譯出一個(gè)字符;再重新從根出發(fā),直到電文結(jié)束例電文是{CAS;CAT;SAT;AT}其編碼“11010111011101000011111000011000”電文為“1101000”譯文只能是“CAT”CS3364224814T;A00110110T:00;:01A:10C:110S:111譯碼:從Huffman樹(shù)根開(kāi)始,從待譯碼電文中逐位取碼。若編線索二叉樹(shù)定義:前驅(qū)與后繼:在二叉樹(shù)的先序、中序或后序遍歷序列中兩個(gè)相鄰的結(jié)點(diǎn)互稱為~線索:指向前驅(qū)或后繼結(jié)點(diǎn)的指針?lè)Q為~線索二叉樹(shù):加上線索的二叉鏈表表示的二叉樹(shù)叫~線索化:對(duì)二叉樹(shù)按某種遍歷次序使其變?yōu)榫€索二叉樹(shù)的過(guò)程叫~實(shí)現(xiàn)在有n個(gè)結(jié)點(diǎn)的二叉鏈表中必定有n+1個(gè)空鏈域在線索二叉樹(shù)的結(jié)點(diǎn)中增加兩個(gè)標(biāo)志域lt:若lt=0,lc域指向左孩子;若lt=1,lc域指向其前驅(qū)rt:若rt=0,rc域指向右孩子;若rt=1,rc域指向其后繼結(jié)點(diǎn)定義:typedefstructnode{intdata;intlt,rt;structnode*lc,*rc;}JD;lcltdatartrc線索二叉樹(shù)typedefstructnodelcABCDEABDCET先序序列:ABCDE先序線索二叉樹(shù)00001111^11ABCDEABABCDEABDCET中序序列:BCAED中序線索二叉樹(shù)00001111^11^ABCDEABABCDEABDCET后序序列:CBEDA后序線索二叉樹(shù)0000111111^ABCDEABABCDE0A01B00D11C11E1T中序序列:BCAED帶頭結(jié)點(diǎn)的中序線索二叉樹(shù)
0
1頭結(jié)點(diǎn):lt=0,lc指向根結(jié)點(diǎn)rt=1,rc指向遍歷序列中最后一個(gè)結(jié)點(diǎn)遍歷序列中第一個(gè)結(jié)點(diǎn)的lc域和最后一個(gè)結(jié)點(diǎn)的rc域都指向頭結(jié)點(diǎn)ABDCET中序序列:BCAED中序線索二叉樹(shù)00001111^11^ABCDE0A01B0算法按中序線索化二叉樹(shù)Ch5_20.cABCDEt
0
1prpiP->AJD*zxxsh(JD*bt){JD*p,*pr,*s[M],*t;inti=0;
t=(JD*)malloc(sizeof(JD));t->lt=0;t->rt=1;t->rc=t;if(bt==NULL)t->lc=t;else{t->lc=bt;pr=t;p=bt;do{while(p!=NULL) {s[i++]=p;p=p->lc;} if(i>0) {p=s[--i]; printf("%c",p->data);
if(p->lc==NULL) {p->lt=1;p->lc=pr;}
if(pr->rc==NULL) {pr->rt=1;pr->rc=p;}
pr=p;p=p->rc; }}while(i>0||p!=NULL);
pr->rc=t;pr->rt=1;t->rc=pr;}return(t);}ABDCEbt^^^^^^0000000000算法Ch5_20.cABCDEt01算法按中序線索化二叉樹(shù)Ch5_20.cABCDEABDCEbt^^^^^^t
0
1prpiP->AP->BJD*zxxsh(JD*bt){JD*p,*pr,*s[M],*t;inti=0;
t=(JD*)malloc(sizeof(JD));t->lt=0;t->rt=1;t->rc=t;if(bt==NULL)t->lc=t;else{t->lc=bt;pr=t;p=bt;do{while(p!=NULL) {s[i++]=p;p=p->lc;} if(i>0) {p=s[--i]; printf("%c",p->data);
if(p->lc==NULL) {p->lt=1;p->lc=pr;}
if(pr->rc==NULL) {pr->rt=1;pr->rc=p;}
pr=p;p=p->rc; }}while(i>0||p!=NULL);
pr->rc=t;pr->rt=1;t->rc=pr;}return(t);}0000000000算法Ch5_20.cABCDEA算法按中序線索化二叉樹(shù)Ch5_20.cABCDEABDCEbt^^^^^^t
0
1prP=NULLiP->AP->BJD*zxxsh(JD*bt){JD*p,*pr,*s[M],*t;inti=0;
t=(JD*)malloc(sizeof(JD));t->lt=0;t->rt=1;t->rc=t;if(bt==NULL)t->lc=t;else{t->lc=bt;pr=t;p=bt;do{while(p!=NULL) {s[i++]=p;p=p->lc;} if(i>0) {p=s[--i]; printf("%c",p->data);
if(p->lc==NULL) {p->lt=1;p->lc=pr;}
if(pr->rc==NULL) {pr->rt=1;pr->rc=p;}
pr=p;p=p->rc; }}while(i>0||p!=NULL);
pr->rc=t;pr->rt=1;t->rc=pr;}return(t);}0000000000算法Ch5_20.cABCDEA算法按中序線索化二叉樹(shù)Ch5_20.cABCDEABDCEbt^^^^^^t
0
1prPiP->A輸出:BJD*zxxsh(JD*bt){JD*p,*pr,*s[M],*t;inti=0;
t=(JD*)malloc(sizeof(JD));t->lt=0;t->rt=1;t->rc=t;if(bt==NULL)t->lc=t;else{t->lc=bt;pr=t;p=bt;do{while(p!=NULL) {s[i++]=p;p=p->lc;} if(i>0) {p=s[--i]; printf("%c",p->data);
if(p->lc==NULL) {p->lt=1;p->lc=pr;}
if(pr->rc==NULL) {pr->rt=1;pr->rc=p;}
pr=p;p=p->rc; }}while(i>0||p!=NULL);
pr->rc=t;pr->rt=1;t->rc=pr;}return(t);}00000000001算法Ch5_20.cABCDEA算法按中序線索化二叉樹(shù)Ch5_20.cABCDEABDCEbt^^^^^t
0
1prP輸出:BiP->AP->CJD*zxxsh(JD*bt){JD*p,*pr,*s[M],*t;inti=0;
t=(JD*)malloc(sizeof(JD));t->lt=0;t->rt=1;t->rc=t;if(bt==NULL)t->lc=t;else{t->lc=bt;pr=t;p=bt;do{while(p!=NULL) {s[i++]=p;p=p->lc;} if(i>0) {p=s[--i]; printf("%c",p->data);
if(p->lc==NULL) {p->lt=1;p->lc=pr;}
if(pr->rc==NULL) {pr->rt=1;pr->rc=p;}
pr=p;p=p->rc; }}while(i>0||p!=NULL);
pr->rc=t;pr->rt=1;t->rc=pr;}return(t);}0000100000算法Ch5_20.cABCDEA算法按中序線索化二叉樹(shù)Ch5_20.cABCDEABDCEbt^^^^^t
0
1prP=NULLiP->AP->C輸出:BJD*zxxsh(JD*bt){JD*p,*pr,*s[M],*t;inti=0;
t=(JD*)malloc(sizeof(JD));t->lt=0;t->rt=1;t->rc=t;if(bt==NULL)t->lc=t;else{t->lc=bt;pr=t;p=bt;do{while(p!=NULL) {s[i++]=p;p=p->lc;} if(i>0) {p=s[--i]; printf("%c",p->data);
if(p->lc==NULL) {p->lt=1;p->lc=pr;}
if(pr->rc==NULL) {pr->rt=1;pr->rc=p;}
pr=p;p=p->rc; }}while(i>0||p!=NULL);
pr->rc=t;pr->rt=1;t->rc=pr;}return(t);}0000100000算法Ch5_20.cABCDEA算法按中序線索化二叉樹(shù)Ch5_20.cABCDEABDCEbt^^^^^t
0
1prPiP->A輸出:BCJD*zxxsh(JD*bt){JD*p,*pr,*s[M],*t;inti=0;
t=(JD*)malloc(sizeof(JD));t->lt=0;t->rt=1;t->rc=t;if(bt==NULL)t->lc=t;else{t->lc=bt;pr=t;p=bt;do{while(p!=NULL) {s[i++]=p;p=p->lc;} if(i>0) {p=s[--i]; printf("%c",p->data);
if(p->lc==NULL) {p->lt=1;p->lc=pr;}
if(pr->rc==NULL) {pr->rt=1;pr->rc=p;}
pr=p;p=p->rc; }}while(i>0||p!=NULL);
pr->rc=t;pr->rt=1;t->rc=pr;}return(t);}00001000001算法Ch5_20.cABCDEA算法按中序線索化二叉樹(shù)Ch5_20.cABCDEABDCEbt^^^^t
0
1prP=NULLiP->A輸出:BCJD*zxxsh(JD*bt){JD*p,*pr,*s[M],*t;inti=0;
t=(JD*)malloc(sizeof(JD));t->lt=0;t->rt=1;t->rc=t;if(bt==NULL)t->lc=t;else{t->lc=bt;pr=t;p=bt;do{while(p!=NULL) {s[i++]=p;p=p->lc;} if(i>0) {p=s[--i]; printf("%c",p->data);
if(p->lc==NULL) {p->lt=1;p->lc=pr;}
if(pr->rc==NULL) {pr->rt=1;pr->rc=p;}
pr=p;p=p->rc; }}while(i>0||p!=NULL);
pr->rc=t;pr->rt=1;t->rc=pr;}return(t);}0000100010算法Ch5_20.cABCDEA算法按中序線索化二叉樹(shù)Ch5_20.cABCDEABDCEbt^^^^t
0
1prPi輸出:BCAJD*zxxsh(JD*bt){JD*p,*pr,*s[M],*t;inti=0;
t=(JD*)malloc(sizeof(JD));t->lt=0;t->rt=1;t->rc=t;if(bt==NULL)t->lc=t;else{t->lc=bt;pr=t;p=bt;do{while(p!=NULL) {s[i++]=p;p=p->lc;} if(i>0) {p=s[--i]; printf("%c",p->data);
if(p->lc==NULL) {p->lt=1;p->lc=pr;}
if(pr->rc==NULL) {pr->rt=1;pr->rc=p;}
pr=p;p=p->rc; }}while(i>0||p!=NULL);
pr->rc=t;pr->rt=1;t->rc=pr;}return(t);}00001000101算法Ch5_20.cABCDEA算法按中序線索化二叉樹(shù)Ch5_20.cABCDEABDCEbt^^^t
0
1Pi輸出:BCAprP->DJD*zxxsh(JD*bt){JD*p,*pr,*s[M],*t;inti=0;
t=(JD*)malloc(sizeof(JD));t->lt=0;t->rt=1;t->rc=t;if(bt==NULL)t->lc=t;else{t->lc=bt;pr=t;p=bt;do{while(p!=NULL) {s[i++]=p;p=p->lc;} if(i>0) {p=s[--i]; printf("%c",p->data);
if(p->lc==NULL) {p->lt=1;p->lc=pr;}
if(pr->rc==NULL) {pr->rt=1;pr->rc=p;}
pr=p;p=p->rc; }}while(i>0||p!=NULL);
pr->rc=t;pr->rt=1;t->rc=pr;}return(t);}0000101010算法Ch5_20.cABCDEA算法按中序線索化二叉樹(shù)Ch5_20.cABCDEABDCEbt^^^t
0
1Pi輸出:BCAprP->DP->EJD*zxxsh(JD*bt){JD*p,*pr,*s[M],*t;inti=0;
t=(JD*)malloc(sizeof(JD));t->lt=0;t->rt=1;t->rc=t;if(bt==NULL)t->lc=t;else{t->lc=bt;pr=t;p=bt;do{while(p!=NULL) {s[i++]=p;p=p->lc;} if(i>0) {p=s[--i]; printf("%c",p->data);
if(p->lc==NULL) {p->lt=1;p->lc=pr;}
if(pr->rc==NULL) {pr->rt=1;pr->rc=p;}
pr=p;p=p->rc; }}while(i>0||p!=NULL);
pr->rc=t;pr->rt=1;t->rc=pr;}return(t);}0000101010算法Ch5_20.cABCDEA算法按中序線索化二叉樹(shù)Ch5_20.cABCDEABDCEbt^^^t
0
1P=NULLi輸出:BCAprP->DP->EJD*zxxsh(JD*bt){JD*p,*pr,*s[M],*t;inti=0;
t=(JD*)malloc(sizeof(JD));t->lt=0;t->rt=1;t->rc=t;if(bt==NULL)t->lc=t;else{t->lc=bt;pr=t;p=bt;do{while(p!=NULL) {s[i++]=p;p=p->lc;} if(i>0) {p=s[--i]; printf("%c",p->data);
if(p->lc==NULL) {p->lt=1;p->lc=pr;}
if(pr->rc==NULL) {pr->rt=1;pr->rc=p;}
pr=p;p=p->rc; }}while(i>0||p!=NULL);
pr->rc=t;pr->rt=1;t->rc=pr;}return(t);}0000101010算法Ch5_20.cABCDEA算法按中序線索化二叉樹(shù)Ch5_20.cABCDEABDCEbt^^^t
0
1Pi輸出:BCAEprP->DJD*zxxsh(JD*bt){JD*p,*pr,*s[M],*t;inti=0;
t=(JD*)malloc(sizeof(JD));t->lt=0;t->rt=1;t->rc=t;if(bt==NULL)t->lc=t;else{t->lc=bt;pr=t;p=bt;do{while(p!=NULL) {s[i++]=p;p=p->lc;} if(i>0) {p=s[--i]; printf("%c",p->data);
if(p->lc==NULL) {p->lt=1;p->lc=pr;}
if(pr->rc==NULL) {pr->rt=1;pr->rc=p;}
pr=p;p=p->rc; }}while(i>0||p!=NULL);
pr->rc=t;pr->rt=1;t->rc=pr;}return(t);}00001010101算法Ch5_20.cABCDEA算法按中序線索化二叉樹(shù)Ch5_20.cABCDEABDCEbt^^t
0
1P=NULLi輸出:BCAEprP->DJD*zxxsh(JD*bt){JD*p,*pr,*s[M],*t;inti=0;
t=(JD*)malloc(sizeof(JD));t->lt=0;t->rt=1;t->rc=t;if(bt==NULL)t->lc=t;else{t->lc=bt;pr=t;p=bt;do{while(p!=NULL) {s[i++]=p;p=p->lc;} if(i>0) {p=s[--i]; printf("%c",p->data);
if(p->lc==NULL) {p->lt=1;p->lc=pr;}
if(pr->rc==NULL) {pr->rt=1;pr->rc=p;}
pr=p;p=p->rc; }}while(i>0||p!=NULL);
pr->rc=t;pr->rt=1;t->rc=pr;}return(t);}0000101011算法Ch5_20.cABCDEA算法按中序線索化二叉樹(shù)Ch5_20.cABCDEABDCEbt^^t
0
1Pi輸出:BCAEDprJD*zxxsh(JD*bt){JD*p,*pr,*s[M],*t;inti=0;
t=(JD*)malloc(sizeof(JD));t->lt=0;t->rt=1;t->rc=t;if(bt==NULL)t->lc=t;else{t->lc=bt;pr=t;p=bt;do{while(p!=NULL) {s[i++]=p;p=p->lc;} if(i>0) {p=s[--i]; printf("%c",p->data);
if(p->lc==NULL) {p->lt=1;p->lc=pr;}
if(pr->rc==NULL) {pr->rt=1;pr->rc=p;}
pr=p;p=p->rc; }}while(i>0||p!=NULL);
pr->rc=t;pr->rt=1;t->rc=pr;}return(t);}00001010111算法Ch5_20.cABCDEA算法按中序線索化二叉樹(shù)Ch5_20.cABCDEABDCEbt^t
0
1P=NULLi輸出:BCAEDprJD*zxxsh(JD*bt){JD*p,*pr,*s[M],*t;inti=0;
t=(JD*)malloc(sizeof(JD));t->lt=0;t->rt=1;t->rc=t;if(bt==NULL)t->lc=t;else{t->lc=bt;pr=t;p=bt;do{while(p!=NULL) {s[i++]=p;p=p->lc;} if(i>0) {p=s[--i]; printf("%c",p->data);
if(p->lc==NULL) {p->lt=1;p->lc=pr;}
if(pr->rc==NULL) {pr->rt=1;pr->rc=p;}
pr=p;p=p->rc; }}while(i>0||p!=NULL);
pr->rc=t;pr->rt=1;t->rc=pr;}return(t);}00001011111算法Ch5_20.cABCDEA算法按中序線索化二叉樹(shù)Ch5_20.cABCDE輸出:BCAEDABDCEt
0
11111110000算法Ch5_20.cABCDE輸出:BCAE算法按中序線索化二叉樹(shù)遍歷中序線索二叉樹(shù)Ch5_20.c在中序線索二叉樹(shù)中找結(jié)點(diǎn)后繼的方法:(1)若rt=1,則rc域直接指向其后繼(2)若rt=0,則結(jié)點(diǎn)的后繼應(yīng)是其右子樹(shù)的左鏈尾(lt=1)的結(jié)點(diǎn)在中序線索二叉樹(shù)中找結(jié)點(diǎn)前驅(qū)的方法:(1)若lt=1,則lc域直接指向其前驅(qū)(2)若lt=0,則結(jié)點(diǎn)的前驅(qū)應(yīng)是其左子樹(shù)的右鏈尾(rt=1)的結(jié)點(diǎn)ABCDE0A01B00D11C11E1T中序序列:BCAED帶頭結(jié)點(diǎn)的中序線索二叉樹(shù)
0
1算法Ch5_20.c在中序線索二叉樹(shù)中找結(jié)點(diǎn)后繼的方法:在中二叉排序樹(shù)定義:二叉排序樹(shù)或是一棵空樹(shù),或是具有下列性質(zhì)的二叉樹(shù):若它的左子樹(shù)不空,則左子樹(shù)上所有結(jié)點(diǎn)的值均小于它的根結(jié)點(diǎn)的值若它的右子樹(shù)不空,則右子樹(shù)上所有結(jié)點(diǎn)的值均大于或等于它的根結(jié)點(diǎn)的值它的左、右子樹(shù)也分別為二叉排序樹(shù)二叉排序樹(shù)的插入插入原則:若二叉排序樹(shù)為空,則插入結(jié)點(diǎn)應(yīng)為新的根結(jié)點(diǎn);否則,繼續(xù)在其左、右子樹(shù)上查找,直至某個(gè)葉子結(jié)點(diǎn)的左子樹(shù)或右子樹(shù)為空為止,則插入結(jié)點(diǎn)應(yīng)為該葉子結(jié)點(diǎn)的左孩子或右孩子二叉排序樹(shù)生成:從空樹(shù)出發(fā),經(jīng)過(guò)一系列的查找、插入操作之后,可生成一棵二叉排序樹(shù)二叉排序樹(shù)插入算法例{10,18,3,8,12,2,7,3}1010181018310183810183812101838122101838122710183812273中序遍歷二叉排序樹(shù)可得到一個(gè)關(guān)鍵字的有序序列Ch5_9.c插入算法例{10,18,3,8,12,2,7二叉排序樹(shù)的刪除要?jiǎng)h除二叉排序樹(shù)中的p結(jié)點(diǎn),分三種情況:p為葉子結(jié)點(diǎn),只需修改p雙親f的指針f->lchild=NULLf->rchild=NULLp只有左子樹(shù)或右子樹(shù)p只有左子樹(shù),用p的左孩子代替p(1)(2)p只有右子樹(shù),用p的右孩子代替p(3)(4)p左、右子樹(shù)均非空沿p左子樹(shù)的根C的右子樹(shù)分支找到S,S的右子樹(shù)為空,將S的左子樹(shù)成為S的雙親Q的右子樹(shù),用S取代p(5)若C無(wú)右子樹(shù),用C取代p(6)二叉排序樹(shù)的刪除SQPLP中序遍歷:QSPLPSQPL中序遍歷:QSPL(2)SPPLQ中序遍歷:PLPSQSPLQ中序遍歷:PLSQ(1)SQPLP中序遍歷:QSPLPSQPL中序遍歷:中序遍歷:PPRSQSPRQ中序遍歷:PRSQ(3)SPPRQ中序遍歷:QSPPRSQPR中序遍歷:QSPR(4)SQPRP中序遍歷:PPRSQSPRQ中序遍歷:PRSFPCPRCLQQLSSL中序遍歷:CLC……QLQSLSPPRFFSCPRCLQQLSL中序遍歷:CLC……QLQSLSPRF(5)FPCPRCL中序遍歷:CLCPPRFFCPRCL中序遍歷:CLCPRF(6)FPCPRCLQQLSSL中序遍歷:CLC……QL刪除算法例805012060110150557053刪除508060120110150557053刪除60805512011015053701042581354刪除1084255134刪除58425413Ch5_10.c刪除算法例805012060110150557053刪除50第五章樹(shù)樹(shù)是一類重要的非線性數(shù)據(jù)結(jié)構(gòu),是以分支關(guān)系定義的層次結(jié)構(gòu)5.1樹(shù)的定義定義定義:樹(shù)(tree)是n(n>0)個(gè)結(jié)點(diǎn)的有限集T,其中:有且僅有一個(gè)特定的結(jié)點(diǎn),稱為樹(shù)的根(root)當(dāng)n>1時(shí),其余結(jié)點(diǎn)可分為m(m>0)個(gè)互不相交的有限集T1,T2,……Tm,其中每一個(gè)集合本身又是一棵樹(shù),稱為根的子樹(shù)(subtree)特點(diǎn):樹(shù)中至少有一個(gè)結(jié)點(diǎn)——根樹(shù)中各子樹(shù)是互不相交的集合第五章樹(shù)樹(shù)是一類重要的非線性數(shù)據(jù)結(jié)構(gòu),是以A只有根結(jié)點(diǎn)的樹(shù)ABCDEFGHIJKLM有子樹(shù)的樹(shù)根子樹(shù)A只有根結(jié)點(diǎn)的樹(shù)ABCDEFGHIJKLM有子樹(shù)的樹(shù)根子樹(shù)基本術(shù)語(yǔ)結(jié)點(diǎn)(node)——表示樹(shù)中的元素,包括數(shù)據(jù)項(xiàng)及若干指向其子樹(shù)的分支結(jié)點(diǎn)的度(degree)——結(jié)點(diǎn)擁有的子樹(shù)數(shù)葉子(leaf)——度為0的結(jié)點(diǎn)孩子(child)——結(jié)點(diǎn)子樹(shù)的根稱為該結(jié)點(diǎn)的孩子雙親(parents)——孩子結(jié)點(diǎn)的上層結(jié)點(diǎn)叫該結(jié)點(diǎn)的~兄弟(sibling)——同一雙親的孩子樹(shù)的度——一棵樹(shù)中最大的結(jié)點(diǎn)度數(shù)結(jié)點(diǎn)的層次(level)——從根結(jié)點(diǎn)算起,根為第一層,它的孩子為第二層……深度(depth)——樹(shù)中結(jié)點(diǎn)的最大層次數(shù)森林(forest)——m(m0)棵互不相交的樹(shù)的集合基本術(shù)語(yǔ)ABCDEFGHIJKLM結(jié)點(diǎn)A的度:3結(jié)點(diǎn)B的度:2結(jié)點(diǎn)M的度:0葉子:K,L,F(xiàn),G,M,I,J結(jié)點(diǎn)A的孩子:B,C,D結(jié)點(diǎn)B的孩子:E,F(xiàn)結(jié)點(diǎn)I的雙親:D結(jié)點(diǎn)L的雙親:E結(jié)點(diǎn)B,C,D為兄弟結(jié)點(diǎn)K,L為兄弟樹(shù)的度:3結(jié)點(diǎn)A的層次:1結(jié)點(diǎn)M的層次:4樹(shù)的深度:4結(jié)點(diǎn)F,G為堂兄弟結(jié)點(diǎn)A是結(jié)點(diǎn)F,G的祖先ABCDEFGHIJKLM結(jié)點(diǎn)A的度:3葉子:K,L,F(xiàn),G5.2二叉樹(shù)定義定義:二叉樹(shù)是n(n0)個(gè)結(jié)點(diǎn)的有限集,它或?yàn)榭諛?shù)(n=0),或由一個(gè)根結(jié)點(diǎn)和兩棵分別稱為左子樹(shù)和右子樹(shù)的互不相交的二叉樹(shù)構(gòu)成特點(diǎn)每個(gè)結(jié)點(diǎn)至多有二棵子樹(shù)(即不存在度大于2的結(jié)點(diǎn))二叉樹(shù)的子樹(shù)有左、右之分,且其次序不能任意顛倒基本形態(tài)A只有根結(jié)點(diǎn)的二叉樹(shù)空二叉樹(shù)AB右子樹(shù)為空AB左子樹(shù)為空ABC左、右子樹(shù)均非空5.2二叉樹(shù)A只有根結(jié)點(diǎn)空二叉樹(shù)AB右子樹(shù)為空AB左子樹(shù)二叉樹(shù)性質(zhì)性質(zhì)1:證明:用歸納法證明之
i=1時(shí),只有一個(gè)根結(jié)點(diǎn),
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026重慶萬(wàn)州梨樹(shù)鄉(xiāng)人民政府非全日制公益性崗位招聘?jìng)淇碱}庫(kù)及參考答案詳解1套
- 跨境貿(mào)易社交媒體運(yùn)營(yíng)與客戶互動(dòng)手冊(cè)
- 2026年水產(chǎn)養(yǎng)殖病害綠色防控課程
- 2025 小學(xué)一年級(jí)道德與法治上冊(cè)天安門(mén)廣場(chǎng)真雄偉課件
- 職業(yè)共病管理中的媒體宣傳策略
- 心肌梗塞病人的氧療護(hù)理
- 黃石2025年湖北大冶市中醫(yī)醫(yī)院招聘護(hù)理人員30人筆試歷年參考題庫(kù)附帶答案詳解
- 職業(yè)倦怠的AI評(píng)估與干預(yù)策略
- 連云港2025年江蘇連云港市教育局部分直屬學(xué)校招聘校醫(yī)7人筆試歷年參考題庫(kù)附帶答案詳解
- 蘇州2025年江蘇蘇州市相城區(qū)集成指揮中心招聘公益性崗位工作人員筆試歷年參考題庫(kù)附帶答案詳解
- 2026中國(guó)電信四川公用信息產(chǎn)業(yè)有限責(zé)任公司社會(huì)成熟人才招聘?jìng)淇碱}庫(kù)及答案詳解參考
- 南瑞9622型6kV變壓器差動(dòng)保護(hù)原理及現(xiàn)場(chǎng)校驗(yàn)實(shí)例培訓(xùn)課件
- 統(tǒng)編版(2024)七年級(jí)上冊(cè)道德與法治期末復(fù)習(xí)必背知識(shí)點(diǎn)考點(diǎn)清單
- 2026年春節(jié)放假前員工安全培訓(xùn)
- 青少年抑郁障礙的護(hù)理與康復(fù)訓(xùn)練
- 農(nóng)業(yè)養(yǎng)殖認(rèn)養(yǎng)協(xié)議書(shū)
- T-CAPC 019-2025 零售藥店常見(jiàn)輕微病癥健康管理規(guī)范
- 康定情歌音樂(lè)鑒賞
- 2025年四川省解除(終止)勞動(dòng)合同證明書(shū)模板
- 2025年焊工證考試模擬試題含答案
- Unit 1 Nature in the balance Vocabulary課件 譯林版必修第三冊(cè)
評(píng)論
0/150
提交評(píng)論