下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖1,S是矩形ABCD的AD邊上一點,點E以每秒kcm的速度沿折線BS-SD-DC勻速運動,同時點F從點C出發(fā)點,以每秒1cm的速度沿邊CB勻速運動.已知點F運動到點B時,點E也恰好運動到點C,此時動點E,F(xiàn)同時停止運動.設(shè)點E,F(xiàn)出發(fā)t秒時,△EBF的面積為.已知y與t的函數(shù)圖像如圖2所示.其中曲線OM,NP為兩段拋物線,MN為線段.則下列說法:①點E運動到點S時,用了2.5秒,運動到點D時共用了4秒;②矩形ABCD的兩鄰邊長為BC=6cm,CD=4cm;③sin∠ABS=;④點E的運動速度為每秒2cm.其中正確的是()A.①②③ B.①③④ C.①②④ D.②③④2.已知二次函數(shù)y=a(x+1)2+b(a≠0)有最大值1,則a、b的大小關(guān)系為()A.a(chǎn)>b B.a(chǎn)<b C.a(chǎn)=b D.不能確定3.如圖,在△ABC中,中線AD、BE相交于點F,EG∥BC,交AD于點G,則的值是()A. B. C. D.4.如圖,在平面直角坐標系中,在軸上,,點的坐標為,繞點逆時針旋轉(zhuǎn),得到,若點的對應(yīng)點恰好落在反比例函數(shù)的圖像上,則的值為()A.4. B.3.5 C.3. D.2.55.如圖,在中,點在邊上,且,,過點作,交邊于點,將沿著折疊,得,與邊分別交于點.若的面積為,則四邊形的面積是()A. B. C. D.6.在平面直角坐標系中,一個智能機器人接到如下指令:從原點O出發(fā),按向右,向上,向右,向下的方向依次不斷移動,每次移動1m.其行走路線如圖所示,第1次移動到A1,第2次移動到A2,…,第n次移動到An.則△OA2A2018的面積是()A.504m2 B.m2 C.m2 D.1009m27.“一般的,如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根.——蘇科版《數(shù)學(xué)》九年級(下冊)P21”參考上述教材中的話,判斷方程x2﹣2x=﹣2實數(shù)根的情況是()A.有三個實數(shù)根 B.有兩個實數(shù)根 C.有一個實數(shù)根 D.無實數(shù)根8.如圖1,E為矩形ABCD邊AD上一點,點P從點C沿折線CD﹣DE﹣EB運動到點B時停止,點Q從點B沿BC運動到點C時停止,它們運動的速度都是1cm/s.若P,Q同時開始運動,設(shè)運動時間為t(s),△BPQ的面積為y(cm2).已知y與t的函數(shù)圖象如圖2,則下列結(jié)論錯誤的是()A.AE=8cmB.sin∠EBC=C.當(dāng)10≤t≤12時,D.當(dāng)t=12s時,△PBQ是等腰三角形9.如圖,△ODC是由△OAB繞點O順時針旋轉(zhuǎn)30°后得到的圖形,若點D恰好落在AB上,則∠A的度數(shù)為()A.70° B.75° C.60° D.65°10.如圖是二次函數(shù)的圖象,使成立的的取值范圍是()A. B.C. D.二、填空題(每小題3分,共24分)11.二次函數(shù)的圖象如圖所示,對稱軸為.若關(guān)于的方程(為實數(shù))在范圍內(nèi)有實數(shù)解,則的取值范圍是__________.12.小剛和小亮用圖中的轉(zhuǎn)盤做“配紫色”游戲:分別轉(zhuǎn)動兩個轉(zhuǎn)盤各一次,若其中的一個轉(zhuǎn)盤轉(zhuǎn)出了紅色,另一個轉(zhuǎn)出了藍色,則可配成紫色,此時小剛贏,否則小亮贏.若用P1表示小剛贏的概率,用P2表示小亮贏概率,則兩人贏的概率P1________P2(填寫>,=或<)13.如圖,在中,,對角線,點E是線段BC上的動點,連接DE,過點D作DP⊥DE,在射線DP上取點F,使得,連接CF,則周長的最小值為___________.14.分解因式:x3﹣4x2﹣12x=_____.15.已知的半徑點在內(nèi),則_________(填>或=,<)16.某種植物的主干長出若干數(shù)目的支干,每個支干又長出同樣數(shù)目的小分支,主干、支干和小分支的總數(shù)是21,則每個支干長出_____.17.如圖,AE、BE是△ABC的兩個內(nèi)角的平分線,過點A作AD⊥AE.交BE的延長線于點D.若AD=AB,BE:ED=1:2,則cos∠ABC=_____.18.__________.三、解答題(共66分)19.(10分)如圖,是兩棵樹分別在同一時刻、同一路燈下的影子.(1)請畫出路燈燈泡的位置(用字母表示)(2)在圖中畫出路燈燈桿(用線段表示);(3)若左邊樹的高度是4米,影長是3米,樹根離燈桿底的距離是1米,求燈桿的高度.20.(6分)如圖1:在Rt△ABC中,AB=AC,D為BC邊上一點(不與點B,C重合),試探索AD,BD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論.小明同學(xué)的思路是這樣的:將線段AD繞點A逆時針旋轉(zhuǎn)90°,得到線段AE,連接EC,DE.繼續(xù)推理就可以使問題得到解決.(1)請根據(jù)小明的思路,試探索線段AD,BD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論;(2)如圖2,在Rt△ABC中,AB=AC,D為△ABC外的一點,且∠ADC=45°,線段AD,BD,CD之間滿足的等量關(guān)系又是如何的,請證明你的結(jié)論;(3)如圖3,已知AB是⊙O的直徑,點C,D是⊙O上的點,且∠ADC=45°.①若AD=6,BD=8,求弦CD的長為;②若AD+BD=14,求的最大值,并求出此時⊙O的半徑.21.(6分)已知:如圖,,點在射線上.求作:正方形,使線段為正方形的一條邊,且點在內(nèi)部.22.(8分)為了創(chuàng)建文明城市,增弘環(huán)保意識,某班隨機抽取了8名學(xué)生(分別為A,B,C,D,E,F(xiàn),G,H),進行垃圾分類投放檢測,檢測結(jié)果如下表,其中“√”表示投放正確,“×”表示投放錯誤,學(xué)生垃圾類別ABCDEFGH可回收物√××√√×√√其他垃圾×√√√√×√√餐廚垃圾√√√√√√√√有害垃圾×√×××√×√(1)檢測結(jié)果中,有幾名學(xué)生正確投放了至少三類垃圾?請列舉出這幾名學(xué)生.(2)為進一步了解學(xué)生垃圾分類的投放情況,從檢測結(jié)果是“有害垃圾”投放錯誤的學(xué)生中隨機抽取2名進行訪談,求抽到學(xué)生A的概率.23.(8分)小明本學(xué)期4次數(shù)學(xué)考試成績?nèi)缦卤砣缡荆撼煽冾悇e第一次月考第二次月考期中期末成績分138142140138(1)小明4次考試成績的中位數(shù)為__________分,眾數(shù)為______________分;(2)學(xué)校規(guī)定:兩次月考的平均成績作為平時成績,求小明本學(xué)期的平時成績;(3)如果本學(xué)期的總評成績按照平時成績占20%、期中成績占30%、期末成績占50%計算,那么小明本學(xué)期的數(shù)學(xué)總評成績是多少分?24.(8分)某手機店銷售部型和部型手機的利潤為元,銷售部型和部型手機的利潤為元.(1)求每部型手機和型手機的銷售利潤;(2)該手機店計劃一次購進,兩種型號的手機共部,其中型手機的進貨量不超過型手機的倍,設(shè)購進型手機部,這部手機的銷售總利潤為元.①求關(guān)于的函數(shù)關(guān)系式;②該手機店購進型、型手機各多少部,才能使銷售總利潤最大?(3)在(2)的條件下,該手機店實際進貨時,廠家對型手機出廠價下調(diào)元,且限定手機店最多購進型手機部,若手機店保持同種手機的售價不變,設(shè)計出使這部手機銷售總利潤最大的進貨方案.25.(10分)如圖,已知矩形ABCD中,E是AD上的一點,F(xiàn)是AB上的一點,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周長為32cm,求AE的長.26.(10分)一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號,一艘在港口正東方向的海警船接到求救信號,測得事故船在它的北偏東37°方向,馬上以40海里每小時的速度前往救援,(1)求點C到直線AB的距離;(2)求海警船到達事故船C處所需的大約時間.(溫馨提示:sin53°≈0.8,cos53°≈0.6)
參考答案一、選擇題(每小題3分,共30分)1、C【分析】①根據(jù)函數(shù)圖像的拐點是運動規(guī)律的變化點由圖象即可判斷.②設(shè),,由函數(shù)圖像利用△EBF面積列出方程組即可解決問題.③由,,得,設(shè),,在中,由列出方程求出,即可判斷.④求出即可解決問題.【詳解】解:函數(shù)圖像的拐點時點運動的變化點根據(jù)由圖象可知點運動到點時用了2.5秒,運動到點時共用了4秒.故①正確.設(shè),,由題意,解得,所以,,故②正確,,,,設(shè),,在中,,,解得或(舍,,,,故③錯誤,,,,故④正確,故選:C.【點睛】本題考查二次函數(shù)綜合題、銳角三角函數(shù)、勾股定理、三角形面積、函數(shù)圖象問題等知識,讀懂圖象信息是解決問題的關(guān)鍵,學(xué)會設(shè)未知數(shù)列方程組解決問題,把問題轉(zhuǎn)化為方程去思考,是數(shù)形結(jié)合的好題目,屬于中考選擇題中的壓軸題.2、B【解析】根據(jù)二次函數(shù)的性質(zhì)得到a<0,b=1,然后對各選項進行判斷.【詳解】∵二次函數(shù)y=a(x-1)2+b(a≠0)有最大值1,∴a<0,b=1.∴a<b,故選B.【點睛】本題考查了二次函數(shù)的最值:確定一個二次函數(shù)的最值,首先看自變量的取值范圍,當(dāng)自變量取全體實數(shù)時,其最值為拋物線頂點坐標的縱坐標;當(dāng)自變量取某個范圍時,要分別求出頂點和函數(shù)端點處的函數(shù)值,比較這些函數(shù)值,從而獲得最值3、C【分析】先證明AG=GD,得到GE為△ADC的中位線,由三角形的中位線可得GEDCBD;由EG∥BC,可證△GEF∽△BDF,由相似三角形的性質(zhì),可得;設(shè)GF=x,用含x的式子分別表示出AG和AF,則可求得答案.【詳解】∵E為AC中點,EG∥BC,∴AG=GD,∴GE為△ADC的中位線,∴GEDCBD.∵EG∥BC,∴△GEF∽△BDF,∴,∴FD=2GF.設(shè)GF=x,則FD=2x,AG=GD=GF+FD=x+2x=3x,AF=AG+GF=3x+x=4x,∴.故選:C.【點睛】本題考查了三角形的中位線定理及相似三角形的判定與性質(zhì),熟練掌握相關(guān)定理及性質(zhì),是解答本題的關(guān)鍵.4、C【分析】先通過條件算出O’坐標,代入反比例函數(shù)求出k即可.【詳解】由題干可知,B點坐標為(1,0),旋轉(zhuǎn)90°后,可知B’坐標為(3,2),O’坐標為(3,1).∵雙曲線經(jīng)過O’,∴1=,解得k=3.故選C.【點睛】本題考查反比例函數(shù)圖象與性質(zhì),關(guān)鍵在于坐標平面內(nèi)的圖形變換找出關(guān)鍵點坐標.5、B【分析】由平行線的性質(zhì)可得,,可設(shè)AH=5a,HP=3a,求出S△ADE=,由平行線的性質(zhì)可得,可得S△FGM=2,再利用S四邊形DEGF=S△DEM-S△FGM,即可得到答案.【詳解】解:如圖,連接AM,交DE于點H,交BC于點P,
∵DE∥BC,
∴,∴∵的面積為∴S△ADE=×32=設(shè)AH=5a,HP=3a
∵沿著折疊
∴AH=HM=5a,S△ADE=S△DEM=
∴PM=2a,
∵DE∥BC
∴
∴S△FGM=2∴S四邊形DEGF=S△DEM-S△FGM=-2=
故選:B.【點睛】本題考查了折疊變換,平行線的性質(zhì),相似三角形的性質(zhì),熟練運用平行線的性質(zhì)是本題的關(guān)鍵.6、A【分析】由OA4n=2n知OA2017=+1=1009,據(jù)此得出A2A2018=1009-1=1008,據(jù)此利用三角形的面積公式計算可得.【詳解】由題意知OA4n=2n,∴OA2016=2016÷2=1008,即A2016坐標為(1008,0),∴A2018坐標為(1009,1),則A2A2018=1009-1=1008(m),∴=A2A2018×A1A2=×1008×1=504(m2).故選:A.【點睛】本題主要考查點的坐標的變化規(guī)律,解題的關(guān)鍵是根據(jù)圖形得出下標為4的倍數(shù)時對應(yīng)長度即為下標的一半,據(jù)此可得.7、C【解析】試題分析:由得,,即是判斷函數(shù)與函數(shù)的圖象的交點情況.因為函數(shù)與函數(shù)的圖象只有一個交點所以方程只有一個實數(shù)根故選C.考點:函數(shù)的圖象點評:函數(shù)的圖象問題是初中數(shù)學(xué)的重點和難點,是中考常見題,在壓軸題中比較常見,要特別注意.8、D【分析】觀察圖象可知:點P在CD上運動的時間為6s,在DE上運動的時間為4s,點Q在BC上運動的時間為12s,所以CD=6,DE=4,BC=12,然后結(jié)合三角函數(shù)、三角形的面積等逐一進行判斷即可得.【詳解】觀察圖象可知:點P在CD上運動的時間為6s,在DE上運動的時間為4s,點Q在BC上運動的時間為12s,所以CD=6,DE=4,BC=12,∵AD=BC,∴AD=12,∴AE=12﹣4=8cm,故A正確,在Rt△ABE中,∵AE=8,AB=CD=6,∴BE==10,∴sin∠EBC=sin∠AEB=,故B正確,當(dāng)10≤t≤12時,點P在BE上,BP=10﹣(t﹣10)=20﹣t,∴S△BQP=?t?(20﹣t)?=﹣t2+6t,故C正確,如圖,當(dāng)t=12時,Q點與C點重合,點P在BE上,此時BP=20-12=8,過點P作PM⊥BC于M,在Rt△BPM中,cos∠PBM=,又∠PBM=∠AEB,在Rt△ABE中,cos∠AEB=,∴,∴BM=6.4,∴QM=12-6.4=5.6,∴BP≠PC,即△PBQ不是等腰三角形,故D錯誤,故選D.【點睛】本題考查動點問題的函數(shù)圖象,涉及了矩形的性質(zhì),勾股定理,三角形函數(shù),等腰三角形的判定等知識,綜合性較強,解題的關(guān)鍵是理解題意,讀懂圖象信息,靈活運用所學(xué)知識解決問題.9、B【分析】由旋轉(zhuǎn)的性質(zhì)知∠AOD=30°,OA=OD,根據(jù)等腰三角形的性質(zhì)及內(nèi)角和定理可得答案.【詳解】由題意得:∠AOD=30°,OA=OD,∴∠A=∠ADO75°.故選B.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì):①對應(yīng)點到旋轉(zhuǎn)中心的距離相等.②對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.③旋轉(zhuǎn)前、后的圖形全等是解題的關(guān)鍵.10、A【分析】先找出拋物線與x軸的交點坐標,根據(jù)圖象即可解決問題.【詳解】解:由圖象可知,拋物線與x軸的交點坐標分別為(-3,0)和(1,0),
∴時,x的取值范圍為.故選:A.【點睛】本題考查拋物線與x軸的交點,對稱軸等知識,解題的關(guān)鍵是學(xué)會數(shù)形結(jié)合,根據(jù)圖象確定自變量的取值范圍,屬于中考??碱}型.二、填空題(每小題3分,共24分)11、【分析】先求出函數(shù)解析式,求出函數(shù)值取值范圍,把t的取值范圍轉(zhuǎn)化為函數(shù)值的取值范圍.【詳解】由已知可得,對稱軸所以b=-2所以當(dāng)x=1時,y=-1即頂點坐標是(1,-1)當(dāng)x=-1時,y=3當(dāng)x=4時,y=8由得因為當(dāng)時,所以在范圍內(nèi)有實數(shù)解,則的取值范圍是故答案為:【點睛】考核知識點:二次函數(shù)和一元二次方程.數(shù)形結(jié)合分析問題,注意函數(shù)的最低點和最高點.12、<【分析】由于第二個轉(zhuǎn)盤紅色所占的圓心角為120°,則藍色部分為紅色部分的兩倍,即相當(dāng)于分成三個相等的扇形(紅、藍、藍),再列出表,根據(jù)概率公式計算出小剛贏的概率和小亮贏的概率,即可得出結(jié)論.【詳解】解:用列表法將所有可能出現(xiàn)的結(jié)果表示如下:紅藍藍藍(紅,藍)(藍,藍)(藍,藍)黃(紅,黃)(藍,黃)(藍,黃)黃(紅,黃)(藍,黃)(藍,黃)紅(紅,紅)(藍,紅)(藍,紅)上面等可能出現(xiàn)的12種結(jié)果中,有3種情況可以得到紫色,所以小剛贏的概率是;則小亮贏的概率是所以;故答案為:<【點睛】本題考查了列表法或樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.13、【分析】過D作DG⊥BC于點G,過F作FH⊥DG于點H,利用tan∠DBC=和BD=10可求出DG和BG的長,然后求出CD的長,可知△DCF周長最小,即CF+DF最小,利用“一線三垂直”得到△HDF∽△GED,然后根據(jù)對應(yīng)邊成比例推出FH=2GD,可知F在DG右側(cè)距離2DG的直線上,作C點關(guān)于直線的對稱點C',連接DC',DC'的長即為CF+DF的最小值,利用勾股定理求出DC',則CD+DC'的長即為周長最小值.【詳解】如圖,過D作DG⊥BC于點G,過F作FH⊥DG于點H,∵tan∠DBC=,BD=10,設(shè)DG=x,BG=2x∴,解得∴DG=,BG=∴GC=BC-BG=∴CD=△DCF周長最小,即CF+DF最小∵∠FDE=90°∴∠HDF+∠GDE=90°∵∠GED+∠GDE=90°∴∠HDF=∠GED又∵∠DHF=∠EGD=90°∴△HDF∽△GED∴∴FH=2GD=即F在DG右側(cè)距離的直線上運動,如圖所示,作C點關(guān)于直線的對稱點C',連接DC',DC'的長即為CF+DF的最小值∵DG⊥BC,F(xiàn)H⊥DG,F(xiàn)O⊥CC'∴四邊形HFOG為矩形,∴OG=HF=又∵GC=∴OC=OC'=∴GC'=在Rt△DGC'中,DC'=∴△DCF周長的最小值=CD+DC'=故答案為:.【點睛】本題考查了利用正切值求邊長,相似三角形的判定以及最短路徑問題,解題的關(guān)鍵是作輔助線將三角形周長最小值轉(zhuǎn)化為“將軍飲馬”模型.14、x(x+2)(x-6).【分析】因式分解的步驟:先提公因式,再利用其它方法分解,注意分解要徹底.首先提取公因式x,然后利用十字相乘法求解,【詳解】解:x3﹣4x2﹣12x=x(x2﹣4x﹣12)=x(x+2)(x﹣6).【點睛】本題考查因式分解-十字相乘法;因式分解-提公因式法,掌握因式分解的技巧正確計算是本題的解題關(guān)鍵.15、<【分析】根據(jù)點與圓的位置關(guān)系,即可求解.【詳解】解:的半徑為點在內(nèi),.故答案為:.【點睛】本題考查的是點與圓的位置關(guān)系.16、4個小支干.【分析】設(shè)每個支干長出x個小支干,根據(jù)主干、支干和小分支的總數(shù)是21,即可得出關(guān)于x的一元二次方程,解之取其正值即可得出結(jié)論.【詳解】解:設(shè)每個支干長出x個小支干,根據(jù)題意得:,解得:舍去,.故答案為4個小支干.【點睛】本題考查了一元二次方程的應(yīng)用,找準等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.17、【分析】取DE的中點F,連接AF,根據(jù)直角三角形斜邊中點的性質(zhì)得出AF=EF,然后證得△BAF≌△DAE,得出AE=AF,從而證得△AEF是等邊三角形,進一步證得∠ABC=60°,即可求得結(jié)論.【詳解】取DE的中點F,連接AF,∴EF=DF,∵BE:ED=1:2,∴BE=EF=DF,∴BF=DE,∵AB=AD,∴∠ABD=∠D,∵AD⊥AE,EF=DF,∴AF=EF,在△BAF和△DAE中∴△BAF≌△DAE(SAS),∴AE=AF,∴△AEF是等邊三角形,∴∠AED=60°,∴∠D=30°,∵∠ABC=2∠ABD,∠ABD=∠D,∴∠ABC=60°,∴cos∠ABC=cos60°=,故答案為:.【點睛】本題考查了全等三角形的判定和性質(zhì),等邊三角形的判定和性質(zhì),正確的作出輔助線是解題的關(guān)鍵.18、【分析】直接代入特殊角的三角函數(shù)值進行計算即可.【詳解】.故答案為:.【點睛】本題考查了特殊角的三角函數(shù)值,熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.三、解答題(共66分)19、(1)見解析;(2)見解析;(3)燈桿的高度是米【分析】(1)直接利用中心投影的性質(zhì)得出O點位置;(2)利用O點位置得出OC的位置;(3)直接利用相似三角形的性質(zhì)得出燈桿的高度.【詳解】解:(1)如圖所示:O即為所求;(2)如圖所示:CO即為所求;(3)由題意可得:△EAB∽△EOC,則,∵EB=3m,BC=1m,AB=4m,∴,解得:CO=,答:燈桿的高度是
米.【點睛】此題主要考查了相似三角形的應(yīng)用,正確得出O點位置是解題關(guān)鍵.20、(1)CD2+BD2=2AD2,見解析;(2)BD2=CD2+2AD2,見解析;(3)①7,②最大值為,半徑為【分析】(1)先判斷出∠BAD=CAE,進而得出△ABD≌△ACE,得出BD=CE,∠B=∠ACE,再根據(jù)勾股定理得出DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,即可得出結(jié)論;(2)同(1)的方法得,ABD≌△ACE(SAS),得出BD=CE,再用勾股定理的出DE2=2AD2,CE2=CD2+DE2=CD2+2AD2,即可得出結(jié)論;(3)先根據(jù)勾股定理的出DE2=CD2+CE2=2CD2,再判斷出△ACE≌△BCD(SAS),得出AE=BD,①將AD=6,BD=8代入DE2=2CD2中,即可得出結(jié)論;②先求出CD=7,再將AD+BD=14,CD=7代入,化簡得出﹣(AD﹣)2+,進而求出AD,最后用勾股定理求出AB即可得出結(jié)論.【詳解】解:(1)CD2+BD2=2AD2,理由:由旋轉(zhuǎn)知,AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,∵AB=AC,∴△ABD≌△ACE(SAS),∴BD=CE,∠B=∠ACE,在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∴∠ACE=45°,∴∠DCE=∠ACB+∠ACE=90°,根據(jù)勾股定理得,DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,∴CD2+BD2=2AD2;(2)BD2=CD2+2AD2,理由:如圖2,將線段AD繞點A逆時針旋轉(zhuǎn)90°,得到線段AE,連接EC,DE,同(1)的方法得,ABD≌△ACE(SAS),∴BD=CE,在Rt△ADE中,AD=AE,∴∠ADE=45°,∴DE2=2AD2,∵∠ADC=45°,∴∠CDE=∠ADC+∠ADE=90°,根據(jù)勾股定理得,CE2=CD2+DE2=CD2+2AD2,即:BD2=CD2+2AD2;(3)如圖3,過點C作CE⊥CD交DA的延長線于E,∴∠DCE=90°,∵∠ADC=45°,∴∠E=90°﹣∠ADC=45°=∠ADC,∴CD=CE,根據(jù)勾股定理得,DE2=CD2+CE2=2CD2,連接AC,BC,∵AB是⊙O的直徑,∴∠ACB=∠ADB=90°,∵∠ADC=45°,∴∠BDC=45°=∠ADC,∴AC=BC,∵∠DCE=∠ACB=90°,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,①AD=6,BD=8,∴DE=AD+AE=AD+BD=14,∴2CD2=142,∴CD=7,故答案為7;②∵AD+BD=14,∴CD=7,∴=AD?(BD+×7)=AD?(BD+7)=AD?BD+7AD=AD(14﹣AD)+7AD=﹣AD2+21AD=﹣(AD﹣)2+,∴當(dāng)AD=時,的最大值為,∵AD+BD=14,∴BD=14﹣=,在Rt△ABD中,根據(jù)勾股定理得,AB=,∴⊙O的半徑為OA=AB=.【點睛】本題考查圓與三角形的結(jié)合,關(guān)鍵在于熟記圓的性質(zhì)和三角形的性質(zhì).21、見詳解【分析】先以點B為圓心,以BD為半徑畫弧,作出點E,再分別以點D,點E為圓心,以BD為半徑畫弧,作出點F,連結(jié)即可作出正方形.【詳解】如圖,作法:1.以點B為圓心,以BD長為半徑畫弧,交AB于點E;2.分別以點D,點E為圓心,以BD長為半徑畫弧,兩弧相交于點F,3.連結(jié)EF,FD,∴四邊形DBEF即為所求作的正方形.理由:∵BD=DF=FE=EB∴四邊形DBEF為菱形,∵∴四邊形DBEF是正方形.【點睛】本題主要考查了基本作圖,正方形的判定.解題的關(guān)鍵是熟記作圖的方法及正方形的判定.22、(1)有5位同學(xué)正確投放了至少三類垃圾,他們分別是B、D、E、G、H同學(xué);(2).【分析】(1)從表格中,找出正確投放了至少三類垃圾的同學(xué)即可;(2))“有害垃圾”投放錯誤的學(xué)生有A、C、D、E、G同學(xué),用列表法列舉出所有可能出現(xiàn)的結(jié)果,從中找出“有A同學(xué)”的結(jié)果數(shù),進而求出概率.【詳解】解:(1)有5位同學(xué)正確投放了至少三類垃圾,他們分別是B、D、E、G、H同學(xué),(2)“有害垃圾”投放錯誤的學(xué)生有A、C、D、E、G同學(xué),從中抽出2人所有可能出現(xiàn)的結(jié)果如下:共有20種可能出現(xiàn)的結(jié)果數(shù),其中抽到A的有8種,因此,抽到學(xué)生A的概率為.【點睛】本題考查的知識點是概率,理解題意,利用列表法求解比較簡單.23、(1)139,138;(2)140分;(3)139分【分析】(1)根據(jù)中位數(shù)和眾數(shù)的定義解答;(2)根據(jù)平均數(shù)的定義求解;(3)根據(jù)加權(quán)平均數(shù)的計算方法求解.【詳解】解:(1)將4個數(shù)按照從小到大的順序排列為:138,138,140,142,所以中位數(shù)是分,眾數(shù)是138分;故答案為:139,138;(2)(分),∴小明的平時成績?yōu)?40分;(3)(分)∴小明本學(xué)期的數(shù)學(xué)總評成績?yōu)?39分.【點睛】本題是有關(guān)統(tǒng)計的綜合題,主要考查了中位數(shù)、眾數(shù)和平均數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 體育八年級《戶外徒步踝關(guān)節(jié)扭傷的正確處理與恢復(fù)》教學(xué)設(shè)計
- 初中語文七年級上冊《最出色的球員》教學(xué)設(shè)計
- 河道工程臨時圍堰施工方案
- 電磁感應(yīng)實驗操作步驟與注意事項
- 勞動合同簽訂及管理規(guī)范指南
- 銀行客戶資產(chǎn)配置方案
- 欄桿結(jié)構(gòu)穩(wěn)定性檢測與改造方案
- 監(jiān)理規(guī)劃編制流程及范本參考
- 股市早盤技術(shù)分析策略指南
- 護士執(zhí)業(yè)資格考試復(fù)習(xí)指導(dǎo)
- 2026年河南農(nóng)業(yè)職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性考試參考題庫含答案解析
- 2024–2025學(xué)年度第一學(xué)期期末卷 八年級歷史(試題)
- 城市軌道交通服務(wù)員(城市軌道交通站務(wù)員)考核要素細目表與考核內(nèi)容結(jié)構(gòu)表
- JBT 12530.4-2015 塑料焊縫無損檢測方法 第4部分:超聲檢測
- 江西省吉安市初中生物七年級期末下冊高分預(yù)測題詳細答案和解析
- 《中國心力衰竭診斷和治療指南2024》解讀(總)
- DZ∕T 0033-2020 固體礦產(chǎn)地質(zhì)勘查報告編寫規(guī)范(正式版)
- 瀝青拌合站方案
- (汪曉贊)運動教育課程模型
- GB/T 42677-2023鋼管無損檢測無縫和焊接鋼管表面缺欠的液體滲透檢測
- 輪機英語題庫
評論
0/150
提交評論