安徽亳州市第七中學(xué)2022-2023學(xué)年數(shù)學(xué)九上期末統(tǒng)考試題含解析_第1頁
安徽亳州市第七中學(xué)2022-2023學(xué)年數(shù)學(xué)九上期末統(tǒng)考試題含解析_第2頁
安徽亳州市第七中學(xué)2022-2023學(xué)年數(shù)學(xué)九上期末統(tǒng)考試題含解析_第3頁
安徽亳州市第七中學(xué)2022-2023學(xué)年數(shù)學(xué)九上期末統(tǒng)考試題含解析_第4頁
安徽亳州市第七中學(xué)2022-2023學(xué)年數(shù)學(xué)九上期末統(tǒng)考試題含解析_第5頁
免費預(yù)覽已結(jié)束,剩余16頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,在4×4的正方形方格中,和的頂點都在邊長為1的小正方形的格點上,則的值為()A. B. C. D.32.下列事件中,是必然事件的是()A.?dāng)S一枚質(zhì)地均勻的骰子,向上一面的點數(shù)為偶數(shù)B.三角形的內(nèi)角和等于180°C.不透明袋子中裝有除色外無其它差別的9個白球,1個黑球,從中摸出一球為白球D.拋擲一枚質(zhì)地均勻的硬幣2次,出現(xiàn)1次“正面向上”,1次“反面向上”3.下列圖形中不是中心對稱圖形的是()A. B. C. D.4.用配方法解方程,變形后的結(jié)果正確的是()A. B. C. D.5.已知:m=+1,n=﹣1,則=()A.±3 B.﹣3 C.3 D.6.由不能推出的比例式是()A. B.C. D.7.對于二次函數(shù)y=-(x+1)2+3,下列結(jié)論:①其圖象開口向下;②其圖象的對稱軸為直線x=1;③其圖象的頂點坐標(biāo)為(-1,3);④當(dāng)x>1時,y隨x的增大而減?。渲姓_結(jié)論的個數(shù)為()A.1 B.2 C.3 D.48.下列關(guān)于x的方程中,一定是一元二次方程的為()A.a(chǎn)x2+bx+c=0 B.x2﹣2=(x+3)2C.x2+﹣5=0 D.x2=09.如圖,中,,在同一平面內(nèi),將繞點旋轉(zhuǎn)到的位置,使得,則的度數(shù)為()A. B. C. D.10.如圖所示,△ABC內(nèi)接于⊙O,∠C=45°.AB=4,則⊙O的半徑為()A. B.4C. D.5二、填空題(每小題3分,共24分)11.如圖,AD:DB=AE:EC,若∠ADE=58°,則∠B=_____.12.已知點P是線段AB的黃金分割點,AP>PB.若AB=2,則AP=_____.13.如圖,在菱形中,邊長為10,.順次連結(jié)菱形各邊中點,可得四邊形;順次連結(jié)四邊形各邊中點,可得四邊形;順次連結(jié)四邊形各邊中點,可得四邊形;按此規(guī)律繼續(xù)下去….則四邊形的周長是_________.14.如圖,是⊙的直徑,,點、在⊙上,、的延長線交于點,且,,有以下結(jié)論:①;②劣弧的長為;③點為的中點;④平分,以上結(jié)論一定正確的是______.15.若、是方程的兩個實數(shù)根,且x1+x2=1-x1x2,則的值為________.16.如圖,直線m∥n,以直線m上的點A為圓心,適當(dāng)長為半徑畫弧,分別交直線m,n于點B、C,連接AC、BC,若∠1=30°,則∠2=_____.17.如圖,某小型水庫欄水壩的橫斷面是四邊形ABCD,DC∥AB,測得迎水坡的坡角α=30°,已知背水坡的坡比為1.2:1,壩頂部DC寬為2m,壩高為6m,則壩底AB的長為_____m.18.用配方法解方程x2﹣2x﹣6=0,原方程可化為_____.三、解答題(共66分)19.(10分)已知拋物線y=x2﹣2和x軸交于A,B(點A在點B右邊)兩點,和y軸交于點C,P為拋物線上的動點.(1)求出A,C的坐標(biāo);(2)求動點P到原點O的距離的最小值,并求此時點P的坐標(biāo);(3)當(dāng)點P在x軸下方的拋物線上運動時,過P的直線交x軸于E,若△POE和△POC全等,求此時點P的坐標(biāo).20.(6分)如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交BC于點D,交AB于點E,過點D作DF⊥AB,垂足為F,連接DE.(1)求證:直線DF與⊙O相切;(2)若AE=7,BC=6,求AC的長.21.(6分)關(guān)于x的方程有兩個不相等的實數(shù)根.(1)求m的取值范圍;(2)是否存在實數(shù)m,使方程的兩個實數(shù)根的倒數(shù)和等于0?若存在,求出m的值;若不存在,請說明理由.22.(8分)拋物線y=﹣x2+x+b與x軸交于A、B兩點,與y軸交于點C.(1)若B點坐標(biāo)為(2,0)①求實數(shù)b的值;②如圖1,點E是拋物線在第一象限內(nèi)的圖象上的點,求△CBE面積的最大值及此時點E的坐標(biāo).(2)如圖2,拋物線的對稱軸交x軸于點D,若拋物線上存在點P,使得P、B、C、D四點能構(gòu)成平行四邊形,求實數(shù)b的值.(提示:若點M,N的坐標(biāo)為M(x?,y?),N(x?,y?),則線段MN的中點坐標(biāo)為(,)23.(8分)某地震救援隊探測出某建筑物廢墟下方點C處有生命跡象,已知廢墟一側(cè)地面上兩探測點A、B相距3米,探測線與地面的夾角分別是30°和60°(如圖),試確定生命所在點C的深度.(結(jié)果精確到0.1米,參考數(shù)據(jù):)24.(8分)如圖所示,陽光透過長方形玻璃投射到地面上,地面上出現(xiàn)一個明亮的平行四邊形,楊陽用量角器量出了一條對角線與一邊垂直,用直尺量出平行四邊形的一組鄰邊的長分別是30cm,50cm,請你幫助楊陽計算出該平行四邊形的面積.25.(10分)如圖,AB是⊙O的直徑,弦DE垂直半徑OA,C為垂足,DE=6,連接DB,,過點E作EM∥BD,交BA的延長線于點M.(1)求的半徑;(2)求證:EM是⊙O的切線;(3)若弦DF與直徑AB相交于點P,當(dāng)∠APD=45°時,求圖中陰影部分的面積.26.(10分)某商場要經(jīng)營一種新上市的文具,進價為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關(guān)系式;(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;(3)商場的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案方案A:該文具的銷售單價高于進價且不超過30元;方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元請比較哪種方案的最大利潤更高,并說明理由

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)勾股定理求出和的各邊長,由三邊對應(yīng)成比例的兩個三角形相似可得,所以可得,求值即可.【詳解】解:由勾股定理,得,,,,,,,,,,.故選:B【點睛】本題考查了相似三角形的判定與性質(zhì)及解直角三角形,靈活利用正方形方格的特點是解題的關(guān)鍵.2、B【分析】根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型.【詳解】解:A、擲一枚質(zhì)地均勻的骰子,向上一面的點數(shù)為偶數(shù)是隨機事件;B、三角形的內(nèi)角和等于180°是必然事件;C、不透明袋子中裝有除色外無其它差別的9個白球,1個黑球,從中摸出一球為白球是隨機事件;D、拋擲一枚質(zhì)地均勻的硬幣2次,出現(xiàn)1次“正面向上”,1次“反面向上”是隨機事件;故選:B.【點睛】本題考查了必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.3、B【分析】在同一平面內(nèi),如果把一個圖形繞某一點旋轉(zhuǎn)180度,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.【詳解】A、C、D都是中心對稱圖形;不是中心對稱圖形的只有B.故選B.【點睛】本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟知中心對稱圖形的定義,即可完成.4、D【分析】先將常數(shù)項移到右側(cè),然后兩邊同時加上一次項系數(shù)一半的平方,配方后進行判斷即可.【詳解】,,,所以,故選D.【點睛】本題考查了配方法解一元二次方程,熟練掌握配方法的一般步驟以及注意事項是解題的關(guān)鍵.5、C【分析】先根據(jù)題意得出和的值,再把式子化成含與的形式,最后代入求值即可.【詳解】由題得:、∴故選:C.【點睛】本題考查代數(shù)式求值和完全平方公式,運用整體思想是關(guān)鍵.6、C【解析】根據(jù)比例的性質(zhì)依次判斷即可.【詳解】設(shè)x=2a,y=3a,A.正確,不符合題意;B.,故該項正確,不符合題意;C.,故該項不正確,符合題意;D.正確,不符合題意;【點睛】此題考查比例的基本性質(zhì),熟記性質(zhì)并運用解題是解此題的關(guān)鍵.7、C【解析】由拋物線解析式可確定其開口方向、對稱軸、頂點坐標(biāo),可判斷①②③,再利用增減性可判斷④,可求得答案.【詳解】∵∴拋物線開口向上,對稱軸為直線x=?1,頂點坐標(biāo)為(?1,3),故②不正確,①③正確,∵拋物線開口向上,且對稱軸為x=?1,∴當(dāng)x>?1時,y隨x的增大而增大,∴當(dāng)x>1時,y隨x的增大而增大,故④正確,∴正確的結(jié)論有3個,故選:C.【點睛】考查二次函數(shù)的圖象與性質(zhì),掌握二次函數(shù)的開口方向、對稱軸、頂點坐標(biāo)的求解方法是解題的關(guān)鍵.8、D【解析】根據(jù)一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個未知數(shù);③未知數(shù)的最高次數(shù)是1.逐一判斷即可.【詳解】解:A、當(dāng)a=0時,ax1+bx+c=0,不是一元二次方程;B、x1﹣1=(x+3)1整理得,6x+11=0,不是一元二次方程;C、,不是整式方程,不是一元二次方程;D、x1=0,是一元二次方程;故選:D.【點睛】本題主要考查一元二次方程的定義,正確把握一元二次方程的定義是解題關(guān)鍵.9、B【分析】根據(jù),得出∠BAC=∠C′CA,利用旋轉(zhuǎn)前后的圖形是全等,所以△ACC′是等腰三角形即可求出∠CC′A,∠CC′A+∠C′AB=180°即可得出旋轉(zhuǎn)角度,最后得出結(jié)果.【詳解】解:∵∴∠BAC=∠C′CA,∠CC′A+∠C′AB=180°∵∴∠C′CA=70°∵△ABC旋轉(zhuǎn)得到△AB′C′∴AC=AC′∴∠ACC′=∠AC′C=70°∴∠BAC′=180°-70°=110°∴∠CAC′=40°∴∠BAB′=40°故選:B.【點睛】本題主要考查的是旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)前后的圖形是全等的,正確的掌握旋轉(zhuǎn)的性質(zhì)的解題的關(guān)鍵.10、A【解析】試題解析:連接OA,OB.∴在中,故選A.點睛:在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半.二、填空題(每小題3分,共24分)11、58°【分析】根據(jù)已知條件可證明△ADE∽△ABC,利用相似三角形的性質(zhì)即可得∠B的度數(shù).【詳解】∵AD:DB=AE:EC,∴AD:AB=AE:AC,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠ABC,∵∠ADE=58°,∴∠B=58°,故答案為:58°【點睛】本題考查了相似三角形的判定和性質(zhì),從相似求兩個三角形的相似比到對應(yīng)角相等.12、-1【詳解】解:如果一點為線段的黃金分割點,那么被分割的較短的邊比較大的邊等于較大的邊比上這一線段的長=≈0.618.∵AB=2,AP﹥BP,∴AP:AB=×2=-1.故答案是:-113、【分析】根據(jù)菱形的性質(zhì),三角形中位線的性質(zhì)以及勾股定理求出四邊形各邊長,得出規(guī)律求出即可.【詳解】∵菱形ABCD中,邊長為10,∠A=60°,設(shè)菱形對角線交于點O,∴,∴,,∴,,順次連結(jié)菱形ABCD各邊中點,

∴△AA1D1是等邊三角形,四邊形A2B2C2D2是菱形,

∴A1D1=AA1=AB=5,C1D1=AC=5,A2B2=C2D2=C2B2=A2D2=AB=5,∴四邊形A2B2C2D2的周長是:5×4=20,

同理可得出:A3D3=5×,C3D3=C1D1=5,A5D5=5,C5D5=C3D3=5,∴四邊形A2019B2019C2019D2019的周長是:故答案為:【點睛】本題主要考查了菱形的性質(zhì)以及矩形的性質(zhì)和中點四邊形的性質(zhì)等知識,根據(jù)已知得出邊長變化規(guī)律是解題關(guān)鍵.14、①②③【分析】①根據(jù)圓內(nèi)接四邊形的外角等于其內(nèi)對角可得∠CBE=∠ADE,根據(jù)等邊對等角得出∠CBE=∠E,等量代換即可得到∠ADE=∠E;②根據(jù)圓內(nèi)接四邊形的外角等于其內(nèi)對角可得∠A=∠BCE=70,根據(jù)等邊對等角以及三角形內(nèi)角和定理求出∠AOB=40,再根據(jù)弧長公式計算得出劣弧的長;③根據(jù)圓周角定理得出∠ACD=90,即AC⊥DE,根據(jù)等角對等邊得出AD=AE,根據(jù)等腰三角形三線合一的性質(zhì)得出∠DAC=∠EAC,再根據(jù)圓周角定理得到點C為的中點;④由DB⊥AE,而∠A≠∠E,得出BD不平分∠ADE.【詳解】①∵ABCD是⊙O的內(nèi)接四邊形,∴∠CBE=∠ADE,∵CB=CE,∴∠CBE=∠E,∴∠ADE=∠E,故①正確;②∵∠A=∠BCE=70,∴∠AOB=40,∴劣弧的長=,故②正確;③∵AD是⊙O的直徑,∴∠ACD=90,即AC⊥DE,∵∠ADE=∠E,∴AD=AE,∴∠DAC=∠EAC,∴點C為的中點,故③正確;④∵DB⊥AE,而∠A≠∠E,∴BD不平分∠ADE,故④錯誤.所以正確結(jié)論是①②③.故答案為①②③.【點睛】本題考查了圓內(nèi)接四邊形的性質(zhì),圓周角定理,弧長的計算,等腰三角形的判定與性質(zhì),三角形內(nèi)角和定理,掌握相關(guān)性質(zhì)及公式是解題的關(guān)鍵.15、1【詳解】若x1,x2是方程x2-2mx+m2-m-1=0的兩個實數(shù)根;∴x1+x2=2m;x1·x2=m2?m?1,∵x1+x2=1-x1x2,∴2m=1-(m2?m?1),解得:m1=-2,m2=1.又∵一元二次方程有實數(shù)根時,△,∴,解得m≥-1,∴m=1.故答案為1.【點睛】(1)若方程的兩根是,則,這一關(guān)系叫做一元二次方程根與系數(shù)的關(guān)系;(2)使用一元二次方程根與系數(shù)關(guān)系解題的前提條件是方程要有實數(shù)根,即各項系數(shù)的取值必須滿足根的判別式△=.16、75°【解析】試題解析:∵直線l1∥l2,∴故答案為17、(7+6)【解析】過點C作CE⊥AB,DF⊥AB,垂足分別為:E,F(xiàn),得到兩個直角三角形和一個矩形,在Rt△AEF中利用DF的長,求得線段AF的長;在Rt△BCE中利用CE的長求得線段BE的長,然后與AF、EF相加即可求得AB的長.【詳解】解:如圖所示:過點C作CE⊥AB,DF⊥AB,垂足分別為:E,F(xiàn),

∵壩頂部寬為2m,壩高為6m,

∴DC=EF=2m,EC=DF=6m,

∵α=30°,

∴BE=(m),

∵背水坡的坡比為1.2:1,

∴,

解得:AF=5(m),

則AB=AF+EF+BE=5+2+6=(7+6)m,

故答案為(7+6)m.【點睛】本題考查了解直角三角形的應(yīng)用,解題的關(guān)鍵是利用銳角三角函數(shù)的概念和坡度的概念求解.18、(x﹣1)2=1【分析】方程常數(shù)項移到右邊,兩邊加上1變形后,即可得到結(jié)果.【詳解】解:方程變形得:x2﹣2x=6,配方得:x2﹣2x+1=1,即(x﹣1)2=1.故答案為:(x﹣1)2=1.【點睛】本題考查了配方法求解方程,屬于簡單題,熟悉配方的方法是解題關(guān)鍵.三、解答題(共66分)19、(1)A(﹣,0),點C的坐標(biāo)為(0,﹣2);(2)最小值為,點P的坐標(biāo)為(,﹣)或(﹣,﹣);(3)P(﹣1,﹣1)或(1,1).【分析】(1)令y=0,解方程求出x的值,即可得到點A、B的坐標(biāo),令x=0求出y的值,即可得到點C的坐標(biāo);(2)根據(jù)二次函數(shù)圖象上點的坐標(biāo)特征設(shè)點P的坐標(biāo)為(x,x2﹣2),利用勾股定理列式求出OP2,再根據(jù)二次函數(shù)的最值問題解答;(3)根據(jù)二次函數(shù)的增減性,點P在第三四象限時,OP≠1,從而判斷出OC與OE是對應(yīng)邊,然后確定出點E與點A或點B重合,再根據(jù)全等三角形對應(yīng)角相等可得∠POC=∠POE,然后根據(jù)第三、四象限角平分線上的點到角的兩邊距離相等的坐標(biāo)特征利用拋物線解析式求解即可.【詳解】解:(1)令y=0,則x2﹣2=0,解得x=±,∵點A在點B右邊,∴A(,0),令x=0,則y=﹣2,∴點C的坐標(biāo)為(0,﹣2);(2)∵P為拋物線y=x2﹣2上的動點,∴設(shè)點P的坐標(biāo)為(x,x2﹣2),則OP2=x2+(x2﹣2)2=x4﹣3x2+4=(x2﹣)2+,∴當(dāng)x2=,即x=±時,OP2最小,OP的值也最小,最小值為,此時,點P的坐標(biāo)為(,﹣)或(﹣,﹣);(3)∵OP2=(x2﹣)2+,∴點P在第三四象限時,OP≠1,∵△POE和△POC全等,∴OC與OE是對應(yīng)邊,∴∠POC=∠POE,∴點P在第三、四象限角平分線上,①點P在第三象限角平分線上時,y=x,∴x2﹣2=x,解得x1=﹣1,x2=2(舍去),此時,點P(﹣1,﹣1);②點P在第四象限角平分線上時,y=﹣x,∴x2﹣2=﹣x,解得x1=1,x2=﹣2(舍去),此時,點P(1,1),綜上所述,P(﹣1,﹣1)或(1,1)時△POE和△POC全等.【點睛】本題是二次函數(shù)綜合題型,主要利用了拋物線與坐標(biāo)軸的交點的求解、二次函數(shù)的最值問題、全等三角形的性質(zhì)、難點在于判斷出(3)點P在第三、四象限角平分線上.20、(1)證明見解析;(2)1.【分析】(1)首先連接OD,根據(jù)等腰三角形的性質(zhì)可證∠C=∠ODC,從而可證∠B=∠ODC,根據(jù)DF⊥AB可證DF⊥OD,所以可證線DF與⊙O相切;(2)根據(jù)圓內(nèi)接四邊形的性質(zhì)可得:△BCA∽△BED,所以可證:,解方程求出BE的長度,從而求出AC的長度.【詳解】解:(1)如圖所示,連接,∵,∴,∵,∴,∴,∴∥,∵,∴;∵點在⊙O上,∴直線與⊙O相切;(2)∵四邊形是⊙O的內(nèi)接四邊形,∴,∵,∴,∴△BED∽△BCA,∴,∵OD∥AB,,∴,∵,∴,∴,∴【點睛】本題考查切線的判定與性質(zhì);相似三角形的判定與性質(zhì).21、(1)m的取值范圍為m>﹣1且m≠1;(2)不存在符合條件的實數(shù)m,理由見解析.【解析】試題分析:(1)由于x的方程mx2+(m+2)x+=1有兩個不相等的實數(shù)根,由此可以得到判別式是正數(shù),這樣就可以得到關(guān)于m的不等式,解不等式即可求解;(2)不存在符合條件的實數(shù)m.設(shè)方程mx2+(m+2)x+=1的兩根分別為x1、x2,由根與系數(shù)關(guān)系有:x1+x2=-,x1?x2=,又+=,然后把前面的等式代入其中即可求m,然后利用(1)即可判定結(jié)果.試題解析:(1)由,得m>﹣1,又∵m≠1∴m的取值范圍為m>﹣1且m≠1;(2)不存在符合條件的實數(shù)m.設(shè)方程兩根為x1,x2則,解得m=﹣2,此時△<1.∴原方程無解,故不存在.22、(1)①b=2;②△CBE面積的最大值為1,此時E(1,2);(2)b=﹣1+或b=,(,)【分析】(1)①將點B(2,0)代入y=﹣x2+x+b即可求b;②設(shè)E(m,﹣m2+m+2),求出BC的直線解析式為y=﹣x+2,和過點E與BC垂直的直線解析式為y=x﹣m2+2,求出兩直線交點F,則EF最大時,△CBE面積的最大;(2)可求C(0,b),B(,0),設(shè)M(t,﹣t2+t+b),利用對角線互相平分的四邊形是平行四邊形,則分三種情況求解:①當(dāng)CM和BD為平行四邊形的對角線時,=,=0,解得b=﹣1+;②當(dāng)BM和CD為平行四邊形的對角線時,=,=,b無解;③當(dāng)BC和MD為平行四邊形的對角線時,=,=,解得b=或b=﹣(舍).【詳解】解:(1)①將點B(2,0)代入y=﹣x2+x+b,得到0=﹣4+2+b,∴b=2;②C(0,2),B(2,0),∴BC的直線解析式為y=﹣x+2,設(shè)E(m,﹣m2+m+2),過點E與BC垂直的直線解析式為y=x﹣m2+2,∴直線BC與其垂線的交點為F(,﹣+2),∴EF=(﹣+2)=[﹣(m﹣1)2+],當(dāng)m=1時,EF有最大值,∴S=×BC×EF=×2×=1,∴△CBE面積的最大值為1,此時E(1,2);(2)∵拋物線的對稱軸為x=,∴D(,0),∵函數(shù)與x軸有兩個交點,∴△=1+4b>0,∴b>﹣,∵C(0,b),B(,0),設(shè)M(t,﹣t2+t+b),①當(dāng)CM和BD為平行四邊形的對角線時,C、M的中點為(,),B、D的中點為(,0),∴=,=0,解得:b=﹣1+或b=﹣1﹣(舍去),∴b=﹣1+;②當(dāng)BM和CD為平行四邊形的對角線時,B、M的中點為(,),C、D的中點為(,),∴=,=,∴b無解;③當(dāng)BC和MD為平行四邊形的對角線時,B、C的中點為(,),M、D的中點為(,),∴=,=,解得:b=或b=﹣(舍);綜上所述:b=﹣1+或b=.【點睛】本題考查二次函數(shù)的綜合;熟練掌握二次函數(shù)的圖象及性質(zhì),熟練應(yīng)用平行四邊形的判定方法是解題的關(guān)鍵.23、2.6米【解析】試題分析:過點C作CD⊥AB于點D,根據(jù)題意得出∠CAD=30°,∠CBD=60°,分別根據(jù)Rt△ACD和Rt△BCD的三角函數(shù)將AD和BD用含CD的代數(shù)式表示,然后根據(jù)AB=3得出答案.試題解析:過作于點∵探測線與地面的夾角為和,∴,,在Rt中,,∴,在Rt中,,∴,又∵∴解得,∴生命所在點的深度約為米.24、1200cm2【解析】先利用勾股定理計算AC,然后根據(jù)平行四邊形的面積求解.【詳解】解如圖,AB=30cm,BC=50cm,AB⊥AC,在Rt△ABC中,AC==40cm,所以該平行四邊形的面積=30×40=1200(cm2).【點睛】本題主要考查了利用勾股定理求直角三角形邊長和求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論