下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.下列標志既是軸對稱圖形又是中心對稱圖形的是().A. B.C. D.2.下列是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.3.當k>0時,下列圖象中哪些可能是y=kx與y=在同一坐標系中的圖象()A. B. C. D.4.下列圖形中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.5.圖所示,已知二次函數(shù)的圖象正好經(jīng)過坐標原點,對稱軸為直線.給出以下四個結論:①;②;③;④.正確的有()A.個 B.個 C.個 D.個6.如圖一段拋物線y=x2﹣3x(0≤x≤3),記為C1,它與x軸于點O和A1:將C1繞旋轉180°得到C2,交x軸于A2;將C2繞旋轉180°得到C3,交x軸于A3,如此進行下去,若點P(2020,m)在某段拋物線上,則m的值為()A.0 B.﹣ C.2 D.﹣27.某種藥品原價為36元/盒,經(jīng)過連續(xù)兩次降價后售價為25元/盒.設平均每次降價的百分率為x,根據(jù)題意所列方程正確的是()A.36(1﹣x)2=36﹣25 B.36(1﹣2x)=25C.36(1﹣x)2=25 D.36(1﹣x2)=258.如圖,A為反比例函數(shù)y=的圖象上一點,AB垂直x軸于B,若S△AOB=2,則k的值為()A.4 B.2 C.﹣2 D.19.反比例函數(shù)圖象上的兩點為,且,則下列表達式成立的是()A. B. C. D.不能確定10.下列銀行標志圖片中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.二、填空題(每小題3分,共24分)11.一個多邊形的每個外角都是36°,這個多邊形是______邊形.12.如果一個扇形的半徑是1,弧長是,那么此扇形的圓心角的大小為_____度.13.如圖,在△ABC中,∠BAC=90°,∠B=60°,AD⊥BC于點D,則△ABD與△ADC的面積比為________.14.數(shù)據(jù)8,8,10,6,7的眾數(shù)是__________.15.如圖,正方形ABEF與正方形BCDE有一邊重合,那么正方形BCDE可以看成是由正方形ABEF繞點O旋轉得到的,則圖中點O的位置為_____.16.如圖,在正方形中,以為邊作等邊,延長,分別交于點,連接、、與相交于點,給出下列結論:①;②;③;④,其中正確的是__________.17.如圖,⊙O是△ABC的外接圓,∠BAC=60°,若⊙O的半徑OC為2,則弦BC的長為___________.18.將拋物線y=﹣x2﹣4x(﹣4≤x≤0)沿y軸折疊后得另一條拋物線,若直線y=x+b與這兩條拋物線共有3個公共點,則b的取值范圍為_____.三、解答題(共66分)19.(10分)某食品商店將甲、乙、丙3種糖果的質量按配置成一種什錦糖果,已知甲、乙、丙三種糖果的單價分別為16元/、20元/、27元/.若將這種什錦糖果的單價定為這三種糖果單價的算術平均數(shù),你認為合理嗎?如果合理,請說明理由;如果不合理,請求出該什錦糖果合理的單價.20.(6分)2018年12月1日,貴陽地鐵一號線正式開通,標志著貴陽中心城區(qū)正式步入地鐵時代,為市民的出行帶來了便捷,如圖是貴陽地鐵一號線路圖(部分),菁菁與琪琪隨機從這幾個站購票出發(fā).(1)菁菁正好選擇沙沖路站出發(fā)的概率為(2)用列表或畫樹狀圖的方法,求菁菁與琪琪出發(fā)的站恰好相鄰的概率.21.(6分)今年下半年以來,豬肉價格不斷上漲,主要是由非洲豬瘟疫情導致.非洲豬瘟疫情發(fā)病急,蔓延速度快.某養(yǎng)豬場第一天發(fā)現(xiàn)3頭生豬發(fā)病,兩天后發(fā)現(xiàn)共有192頭生豬發(fā)病.(1)求每頭發(fā)病生豬平均每天傳染多少頭生豬?(2)若疫情得不到有效控制,按照這樣的傳染速度,3天后生豬發(fā)病頭數(shù)會超過1500頭嗎?22.(8分)(1)計算:(2)已知,求的值23.(8分)周末,小馬和小聰想用所學的數(shù)學知識測量圖書館前小河的寬,測量時,他們選擇河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標桿BC,再在AB的延長線上選擇點D豎起標桿DE,使得點E與點C、A共線.已知:CB⊥AD,ED⊥AD,測得BC=1m,DE=1.35m,BD=7m.測量示意圖如圖所示.請根據(jù)相關測量信息,求河寬AB.24.(8分)在中,AB=6,BC=4,B為銳角且cosB.(1)求∠B的度數(shù).(2)求的面積.(3)求tanC.25.(10分)如圖,拋物線的頂點坐標為,點的坐標為,為直線下方拋物線上一點,連接,.(1)求拋物線的解析式.(2)的面積是否有最大值?如果有,請求出最大值和此時點的坐標;如果沒有,請說明理由.(3)為軸右側拋物線上一點,為對稱軸上一點,若是以點為直角頂點的等腰直角三角形,請直接寫出點的坐標.26.(10分)已知:二次函數(shù)為(1)寫出它的圖象的開口方向,對稱軸及頂點坐標;(2)為何值時,頂點在軸上方;(3)若拋物線與軸交于,過作軸交拋物線于另一點,當時,求此二次函數(shù)的解析式.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)軸對稱圖形與中心對稱圖形的定義解答.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形;B、是軸對稱圖形,也是中心對稱圖形;C、是中心對稱圖形,不是軸對稱圖形;D、是軸對稱圖形,不是中心對稱圖形.故選:B.【點睛】掌握中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.2、A【分析】軸對稱圖形:平面內,一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合的圖形;中心對稱圖形:在平面內,把一個圖形繞著某個點旋轉180°,如果旋轉后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心.根據(jù)中心對稱圖形和軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A選項:是中心對稱圖形但不是軸對稱圖形,故本選項符合題意;B選項:是中心對稱圖形,也是軸對稱圖形,故本選項不符合題意;C選項:不是中心對稱圖形,也不是軸對稱圖形,故本選項不符合題意;D選項:不是中心對稱圖形,也不是軸對稱圖形,故本選項不符合題意.故選A.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.3、B【分析】由系數(shù)即可確定與經(jīng)過的象限.【詳解】解:經(jīng)過第一、三象限,經(jīng)過第一、三象限,B選項符合.故選:B【點睛】本題考查了一次函數(shù)與反比例函數(shù)的圖像,靈活根據(jù)的正負判斷函數(shù)經(jīng)過的象限是解題的關鍵.4、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念分別分析得出答案.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;D、是軸對稱圖形,也是中心對稱圖形,故此選項正確.故選:D.【點睛】本題考查軸對稱圖形與中心對稱圖形的概念,理解掌握兩個定義是解答關鍵.5、C【分析】由拋物線開口方向得到a<0以及函數(shù)經(jīng)過原點即可判斷①;根據(jù)x=-1時的函數(shù)值可以判斷②;由拋物線的對稱軸方程得到為b=3a,用求差法即可判斷③;根據(jù)拋物線與x軸交點個數(shù)得到△=b2-4ac>0,則可對④進行判斷.【詳解】∵拋物線開口向下,
∴a<0,
∵拋物線經(jīng)過原點,
∴c=0,
則abc=0,所以①正確;
當x=-1時,函數(shù)值是a-b+c>0,則②正確;
∵拋物線的對稱軸為直線x=-<0,
∴b=3a,
又∵a<0,
∴a-b=-2a>0∴a>b,則③錯誤;
∵拋物線與x軸有2個交點,
∴△=b2-4ac>0,即4ac-b2<0,所以④正確.
故選:C【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系:對于二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大?。寒攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點位置:拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.6、C【分析】先求出點A1的坐標,再根據(jù)旋轉的性質求出點A1的坐標,然后根據(jù)圖象上點的縱坐標循環(huán)規(guī)律即可求出m的值.【詳解】當y=0時,x1﹣3x=0,解得:x1=0,x1=3,∴點A1的坐標為(3,0).由旋轉的性質,可知:點A1的坐標為(6,0).∵1010÷6=336……4,∴當x=4時,y=m.由圖象可知:當x=1時的y值與當x=4時的y值互為相反數(shù),∴m=﹣(1×1﹣3×1)=1.故選:C.【點睛】此題考查的是探索規(guī)律題和求拋物線上點的坐標,找出圖象上點的縱坐標循環(huán)規(guī)律是解決此題的關鍵.7、C【分析】可先表示出第一次降價后的價格,那么第一次降價后的價格×(1﹣降低的百分率)=1,把相應數(shù)值代入即可求解.【詳解】解:第一次降價后的價格為36×(1﹣x),兩次連續(xù)降價后售價在第一次降價后的價格的基礎上降低x,為36×(1﹣x)×(1﹣x),則列出的方程是36×(1﹣x)2=1.故選:C.【點睛】考查由實際問題抽象出一元二次方程中求平均變化率的方法.若設變化前的量為a,變化后的量為b,平均變化率為x,則經(jīng)過兩次變化后的數(shù)量關系為a(1±x)2=b.8、A【分析】過雙曲線上任意一點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S是個定值,即S=|k|.【詳解】由于點A是反比例函數(shù)圖象上一點,則S△AOB=|k|=2;
又由于函數(shù)圖象位于一、三象限,則k=4.
故選A.【點睛】本題考查反比例函數(shù)系數(shù)k的幾何意義,解題的關鍵是掌握反比例函數(shù)系數(shù)k的幾何意義.9、D【分析】根據(jù)反比例函數(shù)圖象上點的坐標特征得到,,然后分類討論:0<<得到;當<0<得到<;當<<0得到.【詳解】∵反比例函數(shù)圖象上的兩點為,,∴,∴,,當0<<,;當<0<,<;當<<0,;故選D.【點睛】本題主要考查了反比例函數(shù)圖象上點的坐標特征,掌握反比例函數(shù)圖象上點的坐標特征是解題的關鍵.10、B【解析】由題意根據(jù)軸對稱圖形與中心對稱圖形的概念進行依次判斷即可.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B、是軸對稱圖形,也是中心對稱圖形,故本選項正確;C、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;D、不是軸對稱圖形,也不是中心對稱圖形,故本選項錯誤.故選:B.【點睛】本題考查中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.二、填空題(每小題3分,共24分)11、十【分析】根據(jù)正多邊形的性質,邊數(shù)等于360°除以每一個外角的度數(shù).【詳解】∵一個多邊形的每個外角都是36°,∴n=360°÷36°=10,故答案為:十.【點睛】本題考查多邊形內角與外角,掌握多邊形的外角和為解題關鍵.12、1【分析】直接利用扇形弧長公式代入求出即可.【詳解】解:扇形的半徑是1,弧長是,,即,解得:,此扇形所對的圓心角為:.故答案為:1.【點睛】此題主要考查了弧長公式的應用,正確利用弧長公式是解題關鍵.13、1:1【分析】根據(jù)∠BAC=90°,可得∠BAD+∠CAD=90°,再根據(jù)垂直的定義得到∠ADB=∠CDA=90°,利用三角形的內角和定理可得∠B+∠BAD=90°,根據(jù)同角的余角相等得到∠B=∠CAD,利用兩對對應角相等兩三角形相似得到△ABD∽△CAD,由tanB=tan60°=,再根據(jù)相似三角形的面積比等于相似比(對應邊的之比)的平方即可求出結果.【詳解】:∵∠BAC=90°,
∴∠BAD+∠CAD=90°,
又∵AD⊥BC,
∴∠ADB=∠CDA=90°,
∴∠B+∠BAD=90°,
∴∠B=∠CAD,又∠ADB=∠CDA=90°,
∴△ABD∽△CAD,
∴,
∵∠B=60°,
∴,
∴.
故答案為1:1.【點睛】本題考查了相似三角形的判定與性質,熟練掌握相似比即為對應邊之比,周長比等于相似比,面積之比等于相似比的平方是解決問題的關鍵.14、1【分析】根據(jù)眾數(shù)的概念即可得出答案.【詳解】眾數(shù)是指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),題中的1出現(xiàn)次數(shù)最多,所以眾數(shù)是1故答案為:1.【點睛】本題主要考查眾數(shù),掌握眾數(shù)的概念是解題的關鍵.15、點B或點E或線段BE的中點.【分析】由旋轉的性質分情況討論可求解;【詳解】解:∵正方形BCDE可以看成是由正方形ABEF繞點O旋轉得到的,∴若點A與點E是對稱點,則點B是旋轉中心是點B;若點A與點D是對稱點,則點B是旋轉中心是BE的中點;若點A與點E是對稱點,則點B是旋轉中心是點E;故答案為:點B或點E或線段BE的中點.【點睛】本題考查了旋轉的性質,正方形的性質,利用分類討論是本題的關鍵.16、①②③④【分析】①正確.利用直角三角形30度角的性質即可解決問題;②正確,通過計算證明∠BPD=135°,即可判斷;③正確,根據(jù)兩角相等兩個三角形相似即可判斷;④正確.利用相似三角形的性質即可證明.【詳解】∵△BPC是等邊三角形,
∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,
在正方形ABCD中,
∵AB=BC=CD,∠A=∠ABC=∠ADC=∠BCD=90°,
∴∠ABE=∠DCF=90°-60°=30°,在和中,,∴,∴,∴在中,∠A=90°,∠ABE=30°,∴,故①正確;∵PC=CD,∠PCD=30°,
∴∠PDC=∠DPC=75°,∴∠BPD=∠BPC+∠DPC=60°+75°=135°,故②正確;∵∠ADC=90°,∠PDC=75°,
∴∠EDP=∠ADC-∠PDC=90°-75°=15°,
∵∠DBA=45°,∠ABE=30°,
∴∠EBD=∠DBA-∠ABE=45°-30°=15°,
∴∠EDP=∠EBD=15°,
∵∠DEP=∠BED,
∴△PDE∽△DBE,故③正確;∵△PDE∽△DBE,∴,∴,故④正確;綜上,①②③④都正確,故答案為:①②③④.【點睛】本題考查相似三角形的判定和性質,等邊三角形的性質,正方形的性質,直角三角形30度角的性質等知識,解題的關鍵是熟練掌握基本知識.17、.【解析】⊙O是△ABC的外接圓,∠BAC=60°,;因為OB、OC是⊙O的半徑,所以OB=OC,所以=,在中,若⊙O的半徑OC為2,OB=OC=2,在中,BC="2"=【點睛】本題考查圓周角與圓心角、弦心距,要求考生熟悉圓周角與圓心角的關系,會求弦心距和弦長18、0<b<【分析】畫出圖象,利用圖象法解決即可.【詳解】解:將拋物線y=﹣x2﹣4x(﹣4≤x≤0)沿y軸折疊后得另一條拋物線為y=﹣x2+4x(0≤x≤4)畫出函數(shù)如圖,由圖象可知,當直線y=x+b經(jīng)過原點時有兩個公共點,此時b=0,解,整理得x2﹣3x+b=0,若直線y=x+b與這兩條拋物線共有3個公共點,則△=9﹣4b>0,解得所以,當0<b<時,直線y=x+b與這兩條拋物線共有3個公共點,故答案為.【點睛】本題考查了二次函數(shù)圖像的折疊問題,解決本題的關鍵是能夠根據(jù)題意畫出二次函數(shù)折疊后的圖像,掌握二次函數(shù)與一元二次方程的關系.三、解答題(共66分)19、這樣定價不合理,理由見解析【分析】根據(jù)加權平均數(shù)的概念即可解題.【詳解】解:這樣定價不合理.(元/).答:該什錦糖果合理的單價為18.7元/.【點睛】本題考查了加權平均數(shù)的實際計算,屬于簡單題,熟悉加權平均數(shù)的概念是解題關鍵.20、(1);(2)【分析】(1)根據(jù)概率公式,即可求解;(2)記火車站為A,沙沖路為B,望城坡為C,新村為D,然后采用列表法列出所有可能的情況,找出滿足條件的情況,即可得出其概率.【詳解】(1)P(選擇沙沖路站出發(fā))=;(2)記火車站為A,沙沖路為B,望城坡為C,新村為D列表如下:由圖可知共有16種等可能情況,滿足條件的情況是6種P(菁菁與琪琪出發(fā)的站恰好相鄰)=【點睛】此題主要考查概率的求解,熟練掌握,即可解題.21、(1)7頭;(2)會超過1500頭【分析】(1)設每頭發(fā)病生豬平均每天傳染x頭生豬,根據(jù)“第一天發(fā)現(xiàn)3頭生豬發(fā)病,兩天后發(fā)現(xiàn)共有192頭生豬發(fā)病”,即可得出關于x的一元二次方程,解之取其正值即可得出結論;
(2)根據(jù)3天后生豬發(fā)病頭數(shù)=2天后生豬發(fā)病頭數(shù)×(1+7),即可求出3天后生豬發(fā)病頭數(shù),再將其與1500進行比較即可得出結論.【詳解】解:(1)設每頭發(fā)病生豬平均每天傳染頭生豬,依題意,得,解得:,(不合題意,舍去).答:每頭發(fā)病生豬平均每天傳染7頭生豬.(2)(頭,.答:若疫情得不到有效控制,3天后生豬發(fā)病頭數(shù)會超過1500頭.【點睛】本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.22、(1)1;(2).【分析】(1)先計算乘方并對平方根化簡,最后進行加減運算即可;(2)用含b的代數(shù)式表示a,代入式子即可求值.【詳解】解:(1)==1(2)已知,可得,代入=.【點睛】本題考查實數(shù)的運算以及代入求值,熟練掌握相關計算法則是解題關鍵.23、20米【分析】先利用CB⊥AD,ED⊥AD得到∠CBA=∠EDA=90,由此證明△ABC∽△ADE,得到,將數(shù)值代入即可求得AB.【詳解】∵CB⊥AD,ED⊥AD,∴∠CBA=∠EDA=90,∵∠CAB=∠EAD,∴△ABC∽△ADE,∴,∵AD=AB+BD,BD=7,BC=1,DE=1.35,∴,∴AB=20,即河寬為20米.【點睛】此題考查相似三角形的實際應用,解決河寬問題.24、(1)60°;(2);(3)【解析】(1)直接利用三角函數(shù)值,即可求出∠B的度數(shù);(2)過A作AD⊥BC于D,根據(jù)cosB,可求出BD的值,利用勾股定理可求出AD的值,即可求得的面積;(3)利用正切概念即可求得tanC的值;【詳解】解:(1)∵B為銳角且cosB,∴∠B=60°;(2)如圖,過A作AD⊥BC于D,在Rt中,cosB,∵AB=6,∴BD=3,∴,∴,(3)∵BD=3,BC=4,∴CD=1,∴在Rt中,tanC.【點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- IT項目管理流程及關鍵節(jié)點
- 輔料以舊換新制度
- 貨運車輛管理制度
- 調查研究工作制度
- 2025年亞洲清潔能源論壇活動亮點:賦能未來-清潔能源創(chuàng)新、區(qū)域合作與一體化、融資解決方案2025
- 論ISDA主協(xié)議中的終止凈額結算制度
- 行政相對人回訪制度
- 蛋糕店會員卡制度
- 2025年津南教師筆試真題及答案
- 2025年國家技術人事考試及答案
- 百度人才特質在線測評題
- 專題03繞某點旋轉90度求坐標
- DL∕T 5142-2012 火力發(fā)電廠除灰設計技術規(guī)程
- 2024年水合肼行業(yè)發(fā)展現(xiàn)狀分析:水合肼市場需求量約為11.47萬噸
- 《6.2.2 平面向量的數(shù)量積》考點講解復習與同步訓練
- 提水試驗過程及數(shù)據(jù)處理
- GB/T 17592-2024紡織品禁用偶氮染料的測定
- 新人教版五年級小學數(shù)學全冊奧數(shù)(含答案)
- 采購英文分析報告
- GB/T 15622-2023液壓缸試驗方法
- 淋膜作業(yè)標準指導書
評論
0/150
提交評論