版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
§2.1SpaceLatticeⅠ.Crystalsversusnon-crystals1.ClassificationoffunctionalmaterialsChapterⅡFundamentalsofCrystallography
Lessonthree§2.1SpaceLatticeⅠ.Crystalsv1材料科學(xué)基礎(chǔ)課件22.Classificationofmaterialsbasedonstructure
Regularityinatomarrangement——periodicornot(amorphous)2.Classificationofmaterials3Crystalline:Thematerialsatomsarearranged inaperiodicfashion.Amorphous:Thematerial’satomsdonothave along-rangeorder(0.1~1nm).Singlecrystal:intheformofonecrystal
grainsPolycrystalline:
grainboundariesCrystalline:Thematerialsato4材料科學(xué)基礎(chǔ)課件5材料科學(xué)基礎(chǔ)課件6Ⅱ.Spacelattice1.
Definition:Spacelatticeconsistsofanarrayofregularlyarrangedgeometricalpoints,calledlatticepoints.The(periodic)arrangementofthesepointsdescribestheregularityofthearrangementofatomsincrystals.2.
TwobasicfeaturesoflatticepointsPeriodicity:Arrangedinaperiodicpattern.Identity:Thesurroundingsofeachpointinthelatticeareidentical.Ⅱ.Spacelattice2.Twobasicfe7材料科學(xué)基礎(chǔ)課件8Alatticemaybeone,two,orthreedimensionaltwodimensionsSpacelatticeisapointarraywhichrepresentstheregularityofatomarrangements
(1)(2)(3)
a
bAlatticemaybeone,two,9Threedimensions
EachlatticepointhasidenticalsurroundingenvironmentThreedimensionsEachlattice10Ⅲ.UnitcellandlatticeconstantsUnitcellisthesmallestunitofthelattice.Thewholelatticecanbeobtainedbyinfinitiverepetitionoftheunitcellalongit’sthreeedges.Thespacelatticeischaracterizedbythesizeandshapeoftheunitcell.Ⅲ.Unitcellandlatticeconsta11材料科學(xué)基礎(chǔ)課件12Howtodistinguishthesizeandshapeofthedeferentunitcell?
Thesixvariables,whicharedescribedbylatticeconstants
——
a,b,c;α,β,γHowtodistinguishthesizean13LatticeConstantsa
c
b
αβγa
c
b
αβγLatticeConstantsacbαβγa14§2.2CrystalSystem&LatticeTypes
Ifarotationaroundanaxispassingthroughthecrystalbyanangleof360o/ncanbringthecrystalintocoincidencewithitself,thecrystalissaidtohavean-foldrotationsymmetry.Andaxisissaidtoben-foldrotationaxis.
Weidentify14typesofunitcells,orBravaislattices,groupedinsevencrystalsystems.§2.2CrystalSystem&Lattice15Ⅰ.Sevencrystalsystems
Allpossiblestructurereducetoasmallnumberofbasicunitcellgeometries.Thereareonlyseven,uniqueunitcellshapesthatcanbestackedtogethertofillthree-dimensional.Wemustconsiderhowatomscanbestackedtogetherwithinagivenunitcell.Ⅰ.SevencrystalsystemsAl16SevenCrystalSystemsTriclinica≠b≠c
,α≠β≠γ≠90°Monoclinica≠b≠c
,α=β=90°≠γ
α=γ=90°≠βOrthorhombica≠b≠c
,α=β=γ=90°Tetragonala=b≠c
,α=β=γ=90°Cubica=b=c
,α=β=γ=90°Hexagonala=b≠c
,α=β=90°γ=120°Rhombohedrala=b=c
,α=β=γ≠90°SevenCrystalSystemsTriclinic17Ⅱ.14typesofBravaislattices1.DerivationofBravaislatticesBravaislatticescanbederivedbyaddingpointstothecenterofthebodyand/orexternalfacesanddeletingthoselatticeswhichareidentical.Ⅱ.14typesofBravaislattices187×4=28Deletethe14typeswhichareidentical28-14=14+++PICF7×4=28+++PICF192.14typesofBravaislatticeTricl:simple(P)Monocl:simple(P).base-centered(C)Orthor:simple(P).body-centered(I).base-centered(C).face-centered(F)Tetr:simple(P).body-centered(I)Cubic:simple(P).body-centered(I).face-centered(F)Rhomb:simple(P).Hexagonal:simple(P).2.14typesofBravaislattice20材料科學(xué)基礎(chǔ)課件21Crystalsystems(7)Latticetypes(14)PCFI
ABC1Triclinic√2Monoclinic√√or√(γ≠90°orβ≠
90°
)3Orthorhombic√√or√or√√√4Tetragonal√√5Cubic√√√6Hexagonal√7Rhombohedral√SevencrystalsystemsandfourteenlatticetypesCrystalsystemsLatticetypes(22Ⅲ.PrimitiveCellForprimitivecell,thevolumeisminimumPrimitivecellOnlyincludesonelatticepointⅢ.PrimitiveCellPrimitivecell23Ⅳ.ComplexLatticeTheexampleofcomplexlattice120o120o120oⅣ.ComplexLattice120o120o120o24ExamplesandDiscussions1.Whyarethereonly14spacelattices?
ExplainwhythereisnobasecenteredandfacecenteredtetragonalBravaislattice.ExamplesandDiscussions1.Why25P→CI→FButthevolumeisnotminimum.P→CI→FButthevolumeisno262.CriterionforchoiceofunitcellSymmetryAsmanyrightangleaspossibleThesizeofunitcellshouldbeassmallaspossible2.Criterionforchoiceofuni27Exercise1.Determinethenumberoflatticepointspercellinthecubiccrystalsystems.Ifthereisonlyoneatomlocatedateachlatticepoint,calculatethenumberofatomsperunitcell.2.DeterminetherelationshipbetweentheatomicradiusandthelatticeparameterinSC,BCC,andFCCstructureswhenoneatomislocatedateachlatticepoint.3.DeterminethedensityofBCCiron,whichhasalatticeparameterof0.2866nm.Exercise1.Determinethenumbe284.ProvethattheA-face-centeredhexagonallatticeisnotanewtypeoflatticeinadditiontothe14spacelattices.5.DrawaprimitivecellforBCClattice.Thankyou!34.ProvethattheA-face-cente29§2.1SpaceLatticeⅠ.Crystalsversusnon-crystals1.ClassificationoffunctionalmaterialsChapterⅡFundamentalsofCrystallography
Lessonthree§2.1SpaceLatticeⅠ.Crystalsv30材料科學(xué)基礎(chǔ)課件312.Classificationofmaterialsbasedonstructure
Regularityinatomarrangement——periodicornot(amorphous)2.Classificationofmaterials32Crystalline:Thematerialsatomsarearranged inaperiodicfashion.Amorphous:Thematerial’satomsdonothave along-rangeorder(0.1~1nm).Singlecrystal:intheformofonecrystal
grainsPolycrystalline:
grainboundariesCrystalline:Thematerialsato33材料科學(xué)基礎(chǔ)課件34材料科學(xué)基礎(chǔ)課件35Ⅱ.Spacelattice1.
Definition:Spacelatticeconsistsofanarrayofregularlyarrangedgeometricalpoints,calledlatticepoints.The(periodic)arrangementofthesepointsdescribestheregularityofthearrangementofatomsincrystals.2.
TwobasicfeaturesoflatticepointsPeriodicity:Arrangedinaperiodicpattern.Identity:Thesurroundingsofeachpointinthelatticeareidentical.Ⅱ.Spacelattice2.Twobasicfe36材料科學(xué)基礎(chǔ)課件37Alatticemaybeone,two,orthreedimensionaltwodimensionsSpacelatticeisapointarraywhichrepresentstheregularityofatomarrangements
(1)(2)(3)
a
bAlatticemaybeone,two,38Threedimensions
EachlatticepointhasidenticalsurroundingenvironmentThreedimensionsEachlattice39Ⅲ.UnitcellandlatticeconstantsUnitcellisthesmallestunitofthelattice.Thewholelatticecanbeobtainedbyinfinitiverepetitionoftheunitcellalongit’sthreeedges.Thespacelatticeischaracterizedbythesizeandshapeoftheunitcell.Ⅲ.Unitcellandlatticeconsta40材料科學(xué)基礎(chǔ)課件41Howtodistinguishthesizeandshapeofthedeferentunitcell?
Thesixvariables,whicharedescribedbylatticeconstants
——
a,b,c;α,β,γHowtodistinguishthesizean42LatticeConstantsa
c
b
αβγa
c
b
αβγLatticeConstantsacbαβγa43§2.2CrystalSystem&LatticeTypes
Ifarotationaroundanaxispassingthroughthecrystalbyanangleof360o/ncanbringthecrystalintocoincidencewithitself,thecrystalissaidtohavean-foldrotationsymmetry.Andaxisissaidtoben-foldrotationaxis.
Weidentify14typesofunitcells,orBravaislattices,groupedinsevencrystalsystems.§2.2CrystalSystem&Lattice44Ⅰ.Sevencrystalsystems
Allpossiblestructurereducetoasmallnumberofbasicunitcellgeometries.Thereareonlyseven,uniqueunitcellshapesthatcanbestackedtogethertofillthree-dimensional.Wemustconsiderhowatomscanbestackedtogetherwithinagivenunitcell.Ⅰ.SevencrystalsystemsAl45SevenCrystalSystemsTriclinica≠b≠c
,α≠β≠γ≠90°Monoclinica≠b≠c
,α=β=90°≠γ
α=γ=90°≠βOrthorhombica≠b≠c
,α=β=γ=90°Tetragonala=b≠c
,α=β=γ=90°Cubica=b=c
,α=β=γ=90°Hexagonala=b≠c
,α=β=90°γ=120°Rhombohedrala=b=c
,α=β=γ≠90°SevenCrystalSystemsTriclinic46Ⅱ.14typesofBravaislattices1.DerivationofBravaislatticesBravaislatticescanbederivedbyaddingpointstothecenterofthebodyand/orexternalfacesanddeletingthoselatticeswhichareidentical.Ⅱ.14typesofBravaislattices477×4=28Deletethe14typeswhichareidentical28-14=14+++PICF7×4=28+++PICF482.14typesofBravaislatticeTricl:simple(P)Monocl:simple(P).base-centered(C)Orthor:simple(P).body-centered(I).base-centered(C).face-centered(F)Tetr:simple(P).body-centered(I)Cubic:simple(P).body-centered(I).face-centered(F)Rhomb:simple(P).Hexagonal:simple(P).2.14typesofBravaislattice49材料科學(xué)基礎(chǔ)課件50Crystalsystems(7)Latticetypes(14)PCFI
ABC1Triclinic√2Monoclinic√√or√(γ≠90°orβ≠
90°
)3Orthorhombic√√or√or√√√4Tetragonal√√5Cubic√√√6Hexagonal√7Rhombohedral√SevencrystalsystemsandfourteenlatticetypesCrystalsystemsLatticetypes(51Ⅲ.PrimitiveCellForprimitivecell,thevolumeisminimumPrimitivecellOnlyincludesonelatticepointⅢ.PrimitiveCellPrimitivecell52Ⅳ.ComplexLatticeTheexampleofcomplexlattice120o120o
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年天津財(cái)經(jīng)大學(xué)珠江學(xué)院?jiǎn)握新殬I(yè)技能考試題庫(kù)附答案解析
- 2023年石家莊幼兒師范高等??茖W(xué)校單招職業(yè)傾向性測(cè)試題庫(kù)附答案解析
- 2025山東菏澤市公共衛(wèi)生臨床中心招聘?jìng)浒钢乒ぷ魅藛T30人備考題庫(kù)帶答案解析
- 2025廣西百色市那坡縣機(jī)關(guān)后勤服務(wù)中心招聘會(huì)務(wù)、調(diào)度室工作人員3人備考題庫(kù)及答案解析(奪冠)
- 2025年河北女子職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能考試題庫(kù)附答案解析
- 2023年黑龍江省雙鴨山市單招職業(yè)適應(yīng)性測(cè)試模擬測(cè)試卷附答案解析
- 重彩棒鞋子課件
- 腰椎間盤突出癥診療中國(guó)疼痛專家共識(shí)2024年版解讀課件
- 物流無人機(jī)知識(shí)培訓(xùn)課件
- 物流安全法規(guī)培訓(xùn)課件
- 中國(guó)昭通中藥材國(guó)際中心項(xiàng)目可行性研究報(bào)告
- 2025中國(guó)融通資產(chǎn)管理集團(tuán)有限公司招聘筆試備考試題(230人)附答案解析
- 2026馬年春節(jié)新年年貨節(jié)大集廟會(huì)(金馬迎春年貨大集)活動(dòng)策劃方案
- 心臟搭橋課件
- 2026年安全員之A證考試題庫(kù)500道附答案【滿分必刷】
- 2025年廣東省第一次普通高中學(xué)業(yè)水平合格性考試(春季高考)思想政治試題(含答案詳解)
- 人工智能行業(yè)-“人工智能+”行動(dòng)深度解讀與產(chǎn)業(yè)發(fā)展機(jī)遇
- 養(yǎng)殖場(chǎng)貸款申請(qǐng)書樣本
- (一診)達(dá)州市2026屆高三第一次診斷性測(cè)試思想政治試題(含標(biāo)準(zhǔn)答案)
- 購(gòu)車意向金合同范本
- 學(xué)堂在線醫(yī)學(xué)英語(yǔ)詞匯進(jìn)階(首醫(yī))作業(yè)單元測(cè)驗(yàn)答案
評(píng)論
0/150
提交評(píng)論