河北省邯鄲武安市2022年數學九上期末教學質量檢測模擬試題含解析_第1頁
河北省邯鄲武安市2022年數學九上期末教學質量檢測模擬試題含解析_第2頁
河北省邯鄲武安市2022年數學九上期末教學質量檢測模擬試題含解析_第3頁
河北省邯鄲武安市2022年數學九上期末教學質量檢測模擬試題含解析_第4頁
河北省邯鄲武安市2022年數學九上期末教學質量檢測模擬試題含解析_第5頁
免費預覽已結束,剩余22頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.如圖,點在線段上,在的同側作角的直角三角形和角的直角三角形,與,分別交于點,,連接.對于下列結論:①;②;③圖中有5對相似三角形;④.其中結論正確的個數是()A.1個 B.2個 C.4個 D.3個2.下列事件是必然事件的是()A.某人體溫是100℃ B.太陽從西邊下山C.a2+b2=﹣1 D.購買一張彩票,中獎3.如圖,△ABC中,點D為邊BC的點,點E、F分別是邊AB、AC上兩點,且EF∥BC,若AE:EB=m,BD:DC=n,則()A.若m>1,n>1,則2S△AEF>S△ABD B.若m>1,n<1,則2S△AEF<S△ABDC.若m<1,n<1,則2S△AEF<S△ABD D.若m<1,n>1,則2S△AEF<S△ABD4.如圖,A、B、C是⊙O上互不重合的三點,若∠CAO=∠CBO=20°,則∠AOB的度數為()A.50° B.60° C.70° D.80°5.如圖,四邊形ABCD是正方形,以BC為底邊向正方形外部作等腰直角三角形BCE,連接AE,分別交BD,BC于點F,G,則下列結論:①△AFB∽△ABE;②△ADF∽△GCE;③CG=3BG;④AF=EF,其中正確的有().A.①③ B.②④ C.①② D.③④6.如圖,矩形草坪ABCD中,AD=10m,AB=m.現需要修一條由兩個扇環(huán)構成的便道HEFG,扇環(huán)的圓心分別是B,D.若便道的寬為1m,則這條便道的面積大約是()(精確到0.1m2)A.9.5m2 B.10.0m2 C.10.5m2 D.11.0m27.如圖所示,在直角坐標系中,A點坐標為(-3,-2),⊙A的半徑為1,P為x軸上一動點,PQ切⊙A于點Q,則當PQ最小時,P點的坐標為()A.(-3,0) B.(-2,0) C.(-4,0)或(-2,0) D.(-4,0)8.如圖,矩形是由三個全等矩形拼成的,與、、、、分別交于點、、、、,設,,的面積依次為、、,若,則的值為()

A.6 B.8 C.10 D.19.已知Rt△ABC中,∠C=900,AC=2,BC=3,則下列各式中,正確的是()A.; B.; C.; D.以上都不對;10.如圖,正方形中,點是以為直徑的半圓與對角線的交點.現隨機向正方形內投擲一枚小針,則針尖落在陰影區(qū)域的概率為()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,點p是∠的邊OA上的一點,點p的坐標為(12,5),則tanα=_____.12.小明家的客廳有一張直徑為1.1米,高0.75米的圓桌BC,在距地面2米的A處有一盞燈,圓桌的影子為DE,依據題意建立平面直角坐標系,其中點D的坐標為(2,0),則點E的坐標是_________.13.如圖,中,,是線段上的一個動點,以為直徑畫分別交于連接,則線段長度的最小值為__________.14.將一副三角板按圖所示的方式疊放在一起,使直角的頂點重合于點,并能使點自由旋轉,設,,則與之間的數量關系是__________.15.將拋物線y=2x2平移,使頂點移動到點P(﹣3,1)的位置,那么平移后所得新拋物線的表達式是_____.16.在Rt△ABC中,兩直角邊的長分別為6和8,則這個三角形的外接圓半徑長為_____.17.已知中,,交于,且,,,,則的長度為________.18.若代數式4x2-2x-5與2x2+1的值互為相反數,則x的值是____.三、解答題(共66分)19.(10分)如圖,某數學興趣小組為測量一棵古樹BH和教學樓CG的高,先在A處用高1.5米的測角儀測得古樹頂端H的仰角為,此時教學樓頂端G恰好在視線DH上,再向前走7米到達B處,又測得教學樓頂端G的仰角為,點A、B、C三點在同一水平線上.(1)求古樹BH的高;(2)求教學樓CG的高.20.(6分)某小區(qū)新建成的住宅樓主體工程已經竣工,只剩下樓體外表需貼瓷磚,已知樓體外表的面積為.(1)寫出每塊瓷磚的面積與所需的瓷磚塊數(塊)之間的函數關系式;(2)為了使住宅樓的外觀更漂亮,開發(fā)商決定采用灰、白、藍三種顏色的瓷磚,每塊瓷磚的面積都是,灰、白、藍瓷磚使用比例是,則需要三種瓷磚各多少塊?21.(6分)如圖,在△ABC中,AB=AC=13,BC=10,求tanB的值.22.(8分)某品牌太陽能熱水器的實物圖和橫斷面示意圖如圖所示.已知真空集熱管DE與支架CB所在直線相交于點O,且;支架BC與水平線AD垂直.,,,另一支架AB與水平線夾角,求OB的長度(結果精確到1cm;溫馨提示:,,)23.(8分)如圖,圓內接四邊形ABDC,AB是⊙O的直徑,OD⊥BC于E.(1)求證:∠BCD=∠CBD;(2)若BE=4,AC=6,求DE的長.24.(8分)已知在平面直角坐標中,點A(m,n)在第一象限內,AB⊥OA且AB=OA,反比例函數y=的圖象經過點A,(1)當點B的坐標為(4,0)時(如圖1),求這個反比例函數的解析式;(2)當點B在反比例函數y=的圖象上,且在點A的右側時(如圖2),用含字母m,n的代數式表示點B的坐標;(3)在第(2)小題的條件下,求的值.25.(10分)如圖,AG是∠PAQ的平分線,點E在AQ上,以AE為直徑的⊙0交AG于點D,過點D作AP的垂線,垂足為點C,交AQ于點B.(1)求證:直線BC是⊙O的切線;(2)若⊙O的半徑為6,AC=2CD,求BD的長26.(10分)如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.(1)證明:△APD≌△CPD;(2)求∠CPE的度數;(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當∠ABC=120°時,連接CE,試探究線段AP與線段CE的數量關系,并說明理由.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】如圖,設AC與PB的交點為N,根據直角三角形的性質得到,根據相似三角形的判定定理得到△BAE∽△CAD,故①正確;根據相似三角形的性質得到∠BEA=∠CDA,推出△PME∽△AMD,根據相似三角形的性質得到MP?MD=MA?ME,故②正確;由相似三角形的性質得到∠APM=∠DEM=90,根據垂直的定義得到AP⊥CD,故④正確;同理:△APN∽△BCN,△PNC∽△ANB,于是得到圖中相似三角形有6對,故③不正確.【詳解】如圖,設AC與PB的交點為N,∵∠ABC=∠AED=90,∠BAC=∠DAE=30,∴,∠BAE=30+∠CAE,∠CAD=30+∠CAE,∴∠BAE=∠CAD,∴△BAE∽△CAD,故①正確;∵△BAE∽△CAD,∴∠BEA=∠CDA,∵∠PME=∠AMD,∴△PME∽△AMD,∴,∴MP?MD=MA?ME,故②正確;∴,∵∠PMA=∠EMD,∴△APM∽△DEM,∴∠APM=∠DEM=90,∴AP⊥CD,故④正確;同理:△APN∽△BCN,△PNC∽△ANB,∵△ABC∽△AED,∴圖中相似三角形有6對,故③不正確;故選:D.【點睛】本題考查了相似三角形的判定和性質,直角三角形的性質,正確的識別圖形是解題的關鍵.2、B【解析】根據必然事件的特點:一定會發(fā)生的特點進行判斷即可【詳解】解:A、某人體溫是100℃是不可能事件,本選項不符合題意;B、太陽從西邊下山是必然事件,本選項符合題意;C、a2+b2=﹣1是不可能事件,本選項不符合題意;D、購買一張彩票,中獎是隨機事件,本選項不符合題意.故選:B.【點睛】本題考查了必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件,不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.3、D【分析】根據相似三角形的判定與性質,得出,,從而建立等式關系,得出,然后再逐一分析四個選項,即可得出正確答案.【詳解】解:∵EF∥BC,若AE:EB=m,BD:DC=n,?∴△AEF∽△ABC,∴,∴,∴,∴∴當m=1,n=1,即當E為AB中點,D為BC中點時,,A.當m>1,n>1時,S△AEF與S△ABD同時增大,則或,即2或2>,故A錯誤;B.當m>1,n<1,S△AEF增大而S△ABD減小,則,即2,故B錯誤;C.m<1,n<1,S△AEF與S△ABD同時減小,則或,即2或2<,故C錯誤;D.m<1,n>1,S△AEF減小而S△ABD增大,則,即2<,故D正確.故選D.【點睛】本題主要考查了相似三角形的判定與性質,熟練掌握相似三角形的性質是解答本題的關鍵.4、D【分析】連接CO并延長交⊙O于點D,根據等腰三角形的性質,得∠CAO=∠ACO,∠CBO=∠BCO,結合三角形外角的性質,即可求解.【詳解】連接CO并延長交⊙O于點D,∵∠CAO=∠ACO,∠CBO=∠BCO,∴∠CAO=∠ACO=∠CBO=∠BCO=20°,∴∠AOD=∠CAO+∠ACO=40°,∠BOD=∠CBO+∠BCO=40°,∴∠AOB=∠AOD+∠BOD=80°.故選D.【點睛】本題主要考查圓的基本性質,三角形的外角的性質以及等腰三角形的性質,添加和數的輔助線,是解題的關鍵.5、B【解析】連接AC,交BD于O,過點E作EH⊥BC于H,由正方形的性質及等腰直角三角形的性質可得∠ADF=∠ABD=∠BCE=∠CBE=45°,可得∠ABE=135°,根據外角性質可得∠AFD=∠FAB+∠ABF>45°,利用平角定義可得∠AFB<135°,即可證明∠AFB≠∠ABE,可對①進行判斷;由EH⊥BC可證明EH//AB,根據平行線的性質可得∠HEG=∠FAB,根據角的和差關系可證明∠DAF=∠CEG,即可證明△ADF∽△GCE;可對②進行判斷,由EH//AB可得△HEG∽△BAG,根據相似三角形的性質即可得出BG=2HG,根據等腰直角三角形性質可得CH=BH,進而可得CG=2BG,可對③進行判斷;根據正方形的性質可得OA=BE,∠AOF=∠FBE=90°,利用AAS可證明△AOF≌△EBF,可得AF=EF,可對④進行判斷;綜上即可得答案.【詳解】如圖,連接AC,交BD于O,過點E作EH⊥BC于H,∵ABCD是正方形,△BCE是等腰直角三角形,∴∠ADF=∠ABD=∠BCE=∠CBE=45°,∴∠ABE=135°,∵∠AFD=∠BAF+∠ABF=∠BAF+45°>45°,∴∠AFB=180°-∠AFD<135°,∴∠AFB≠∠ABE,∴△AFB與△ABE不相似,故①錯誤,∵EH⊥BC,∠ABC=90°,∴EH//AB,∴∠HEG=∠FAB,∴∠AFD=∠FAB+∠ABD=45°+∠HEG=∠CEG,又∵∠ADB=∠GCE=45°,∴△ADF∽△GCE,故②正確,∵EH//AB,∴△HEG∽△BAG,∴,∵△BCE是等腰直角三角形,∴EH=CH=BH=BC=AB,∴=,即BG=2HG,∴CH=BH=3HG,∴CG=CH+HG=4HG,∴CG=2BG,故③錯誤,∵ABCD是正方形,△BCE是等腰直角三角形,∴∠AOF=90°,∠FBE=∠DBC+∠CBE=45°+45°=90°,OA=AB,BE=BC,∴∠AOF=∠FBE,OA=BE,在△AOF和△EBF中,,∴△AOF≌△EBF,∴AF=EF,故④正確,綜上所述:正確的結論有②④,故選:B.【點睛】本題考查正方形的性質、等腰直角三角形的性質、全等三角形的判定與性質及相似三角形的判定與性質,熟練掌握相關判定定理及性質是解題關鍵.6、C【分析】由四邊形ABCD為矩形得到△ADB為直角三角形,又由AD=10,AB=10,由此利用勾股定理求出BD=20,又由cos∠ADB=,得到∠ADB=60°,又矩形對角線互相平分且相等,便道的寬為1m,所以每個扇環(huán)都是圓心角為30°且外環(huán)半徑為10.1,內環(huán)半徑為9.1.這樣可以求出每個扇環(huán)的面積.【詳解】∵四邊形ABCD為矩形,∴△ADB為直角三角形,又∵AD=10,AB=,∴BD=,又∵cos∠ADB=,∴∠ADB=60°.又矩形對角線互相平分且相等,便道的寬為1m,所以每個扇環(huán)都是圓心角為30°,且外環(huán)半徑為10.1,內環(huán)半徑為9.1.∴每個扇環(huán)的面積為.∴當π取3.14時整條便道面積為×2=10.4666≈10.1m2.便道面積約為10.1m2.故選:C.【點睛】此題考查內容比較多,有勾股定理、三角函數、扇形面積,做題的關鍵是把實際問題轉化為數學問題.7、A【解析】此題根據切線的性質以及勾股定理,把要求PQ的最小值轉化為求AP的最小值,再根據垂線段最短的性質進行分析求解.【詳解】連接AQ,AP.根據切線的性質定理,得AQ⊥PQ;要使PQ最小,只需AP最小,則根據垂線段最短,則作AP⊥x軸于P,即為所求作的點P;此時P點的坐標是(-3,0).故選A.【點睛】此題應先將問題進行轉化,再根據垂線段最短的性質進行分析.8、B【分析】由已知條件可以得到△BPQ∽△DKM∽△CNH,然后得到△BPQ與△DKM的相似比為,△BPQ與△CNH的相似比為,由相似三角形的性質求出,從而求出.【詳解】解:∵矩形是由三個全等矩形拼成的,∴AB=BD=CD,AE∥BF∥DG∥CH,∴四邊形BEFD、四邊形DFGC是平行四邊形,∠BQP=∠DMK=∠CHN,∴BE∥DF∥CG,∴∠BPQ=∠DKM=∠CNH,∴△ABQ∽△ADM,△ABQ∽△ACH,∴,,∴△BPQ∽△DKM∽△CNH,∵,,∴,,∴,,∵,∴,∴;故選:B.【點睛】本題考查了相似三角形的判定和性質,矩形的性質以及平行四邊形的判定和性質,解題的關鍵是熟練掌握相似三角形的判定和性質,正確得到,,從而求出答案.9、C【分析】根據勾股定理求出AB,根據銳角三角函數的定義求出各個三角函數值,即可得出答案.【詳解】如圖:

由勾股定理得:AB=,

所以cosB=,sinB=,所以只有選項C正確;

故選:C.【點睛】此題考查銳角三角函數的定義的應用,能熟記銳角三角函數的定義是解此題的關鍵.10、B【分析】連接BE,如圖,利用圓周角定理得到∠AEB=90°,再根據正方形的性質得到AE=BE=CE,于是得到陰影部分的面積=△BCE的面積,然后用△BCE的面積除以正方形ABCD的面積可得到鏢落在陰影部分的概率.【詳解】解:連接BE,如圖,

∵AB為直徑,

∴∠AEB=90°,

而AC為正方形的對角線,

∴AE=BE=CE,

∴弓形AE的面積=弓形BE的面積,

∴陰影部分的面積=△BCE的面積,

∴鏢落在陰影部分的概率=.

故選:B.【點睛】本題考查了幾何概率:某事件的概率=這個事件所對應的面積除以總面積.也考查了正方形的性質.二、填空題(每小題3分,共24分)11、【分析】根據題意過P作PE⊥x軸于E,根據P(12,5)得出PE=5,OE=12,根據銳角三角函數定義得出,代入進行計算求出即可.【詳解】解:過P作PE⊥x軸于E,∵P(12,5),∴PE=5,OE=12,∴.故答案為:.【點睛】本題考查銳角三角函數的定義的應用,注意掌握在Rt△ACB中,∠C=90°,則.12、(3.76,0)【分析】根據相似三角形的判定和性質即可得到結論.【詳解】解:∵BC∥DE,∴△ABC∽△ADE,∴,∵BC=1.1,∴DE=3.76,∴E(3.76,0).故答案為:(3.76,0).【點睛】本題考查了中心投影,相似三角形的判定和性質,正確的識別圖形是解題的關鍵.13、.【詳解】解:如圖,連接,過點作,垂足為∵,∴.由∵,∴.而,則.在中,,∴.所以當最小即半徑最小時,線段長度取到最小值,故當時,線段長度最?。谥校?,則此時的半徑為1,∴.故答案為:.14、【分析】分重疊和不重疊兩種情況討論,由旋轉的性質,即可求解.【詳解】如圖,由題意得:,,,.如圖,由題意得:,,,,.綜上所述,,故答案為:.【點睛】本題考查了旋轉的性質,靈活運用旋轉的性質是本題的關鍵.15、y=2(x+3)2+1【解析】由于拋物線平移前后二次項系數不變,然后根據頂點式寫出新拋物線解析式.【詳解】拋物線y=2x2平移,使頂點移到點P(﹣3,1)的位置,所得新拋物線的表達式為y=2(x+3)2+1.故答案為:y=2(x+3)2+1【點睛】本題考查了二次函數圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.16、1【分析】根據直角三角形外接圓的直徑是斜邊的長進行求解即可.【詳解】由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直徑,∴這個三角形的外接圓直徑是10;∴這個三角形的外接圓半徑長為1,故答案為1.【點睛】本題考查了90度的圓周角所對的弦是直徑,熟練掌握是解題的關鍵.17、【分析】過B作BF⊥CD于F,BG⊥BF交AD的延長線于G,則四邊形DGBF是矩形,由矩形的性質得到BG=DF,DG=FB.由△BFC是等腰直角三角形,得到FC=BF=1.設DE=9x,則CE=7x,EF=CE-FC=7x-1,BG=DF=16x-1,DG=FB=1.在Rt△ADC和Rt△AGB中,由AC=AB,利用勾股定理得到AD=16x-1.證明△FEB∽△DEA,根據相似三角形的對應邊成比例可求出x的值,進而得到AD,DE的長.在Rt△ADE中,由勾股定理即可得出結論.【詳解】如圖,過B作BF⊥CD于F,BG⊥BF交AD的延長線于G,∴四邊形DGBF是矩形,∴BG=DF,DG=FB.∵∠BCD=45°,∴△BFC是等腰直角三角形.∵BC=,∴FC=BF=1.設DE=9x,則CE=7x,EF=CE-FC=7x-1,BG=DF=16x-1,DG=FB=1.在Rt△ADC和Rt△AGB中,∵AC=AB,∴,∴,解得:AD=16x-1.∵FB∥AD,∴△FEB∽△DEA,∴,∴,∴18x1-16x+1=0,解得:x=或x=.當x=時,7x-1<0,不合題意,舍去,∴x=,∴AD=16x-1=6,DE=9x=,∴AE=.故答案為:.【點睛】本題考查了矩形的判定與性質以及相似三角形的判定與性質.求出AD=16x-1是解答本題的關鍵.18、1或-【解析】由題意得:4x2-2x-5+2x2+1=0,解得:x=1或x=-,故答案為:1或-.三、解答題(共66分)19、(1)8.5米;(2)米【分析】(1)利用等腰直角三角形的性質即可解決問題;(2)作HJ⊥CG于G.則△HJG是等腰直角三角形,四邊形EFJH是矩形,設GJ=EF=HJ=x.構建方程即可解決問題;【詳解】(1)由題意:四邊形ABED是矩形,可得DE=AB=7米,AD=BE=1.5米,在Rt△DEH中,∵∠HDE=45°,∴HE=DE=7米,∴BH=EH+BE=8.5米,所以古樹BH的高為8.5米;(2)作HJ⊥CG于J.易證△HJG是等腰直角三角形,四邊形EFJH是矩形,∴JF=HE=7米,設HJ=x.則GJ=EF=HJ=x,在Rt△EFG中,tan60°=,即,∴,∴,∴(米);所以教學樓CG的高為米.【點睛】本題考查解直角三角形的應用-仰角俯角問題,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考??碱}型.20、(1);(2)需要灰瓷磚125000塊,白瓷磚250000塊、藍瓷磚為250000塊【分析】(1)根據每塊瓷磚的面積S=樓體外表的總面積÷所需的瓷磚塊數n塊,求出即可;(2)設用灰瓷磚x塊,則白瓷磚、藍瓷磚分別為2x塊、2x塊,再用n=625000求出即可.【詳解】解;(1)∵每塊瓷磚的面積樓體外表的總面積÷所需的瓷磚塊數塊,由此可得出與的函數關系式是:(2)當時,設用灰瓷磚塊,則白瓷磚、藍瓷磚分別為塊、塊,依據題意得出:,解得:,∴需要灰瓷磚125000塊,白瓷磚250000塊、藍瓷磚為250000塊.【點睛】此題主要考查了反比例函數的應用,根據已知得出瓷磚總塊數進而得出等式方程是解題關鍵.21、【分析】過A點作AD⊥BC,將等腰三角形轉化為直角三角形,利用勾股定理求AD,利用銳角三角函數的定義求∠B的正切值.【詳解】過點A作AD⊥BC,垂足為D,∵AB=AC=13,BC=10,∴BD=DC=BC=5,∴AD,在Rt△ABD中,∴tanB.【點睛】本題考查了勾股定理,等腰三角形的性質和三角函數的應用,關鍵是將問題轉化到直角三角形中求解,并且要熟練掌握好邊角之間的關系.22、.【分析】設,根據含30度角的直角三角形的性質以及銳角三角函數的定義即可求出答案.【詳解】設,∴,∵,∴,∴,∵,∴,解得:,∴.8≈19cm【點睛】本題考查解直角三角形,熟練運用銳角三角函數的定義是解題關鍵.23、(1)詳見解析;(1)1.【分析】(1)根據OD⊥BC于E可知,所以BD=CD,故可得出結論;(1)先根據圓周角定理得出∠ACB=90°,再OD⊥BC于E可知OD∥AC,由于點O是AB的中點,所以OE是△ABC的中位線,故,在Rt△OBE中根據勾股定理可求出OB的長,故可得出DE的長,進而得出結論.【詳解】解:(1)∵OD⊥BC于E,∴,∴BD=CD,

∴∠BCD=∠CBD;(1)∵AB是⊙O的直徑,

∴∠ACB=90°,

∵OD⊥BC于E,

∴OD∥AC,

∵點O是AB的中點,

∴OE是△ABC的中位線,在Rt△OBE中,

∵BE=4,OE=3,,即OD=OB=5,

∴DE=OD-OE=5-3=1.24、(1)y=;(2)B(m+n,n﹣m);(3)【分析】(1)根據等腰直角三角形性質,直角三角形斜邊中線定理,三線合一,得到點坐標,代入解析式即可得到.(2)過點作平行于軸的直線,過點作垂直于軸的直線交于點,交軸于點,構造一線三等角全等,得到,,所以(3)把點和點的坐標代入反比例函數解析式得到關

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論