2022-2023學(xué)年河南省濮陽市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)_第1頁
2022-2023學(xué)年河南省濮陽市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)_第2頁
2022-2023學(xué)年河南省濮陽市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)_第3頁
2022-2023學(xué)年河南省濮陽市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)_第4頁
2022-2023學(xué)年河南省濮陽市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)_第5頁
已閱讀5頁,還剩32頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年河南省濮陽市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(50題)1.

2.若,則下列命題中正確的有()。A.

B.

C.

D.

3.若在(a,b)內(nèi)f'(x)<0,f''(x)<0,則f(x)在(a,b)內(nèi)()。A.單減,凸B.單增,凹C.單減,凹D.單增,凸4.()。A.-2B.-1C.0D.25.設(shè)函數(shù)f(x)在點(diǎn)x0。處連續(xù),則下列結(jié)論正確的是().A.A.

B.

C.

D.

6.

7.

8.一端固定,一端為彈性支撐的壓桿,如圖所示,其長度系數(shù)的范圍為()。

A.μ<0.7B.μ>2C.0.7<μ<2D.不能確定

9.

10.等于().A.A.2B.1C.1/2D.0

11.

12.若x→x0時(shí),α(x)、β(x)都是無窮小(β(x)≠0),則x→x0時(shí),α(x)/β(x)A.A.為無窮小B.為無窮大C.不存在,也不是無窮大D.為不定型13.對于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex

B.y*=x(Ax+B)ex

C.y*=Ax3ex

D.y*=x2(Ax+B)ex

14.

15.

16.

17.A.0B.1C.2D.不存在18.()A.A.1/2B.1C.2D.e19.設(shè)f(x)在點(diǎn)x0處連續(xù),則下列命題中正確的是().A.A.f(x)在點(diǎn)x0必定可導(dǎo)B.f(x)在點(diǎn)x0必定不可導(dǎo)C.必定存在D.可能不存在20.A.A.-sinx

B.cosx

C.

D.

21.

有()個(gè)間斷點(diǎn)。

A.1B.2C.3D.4

22.

23.

24.A.A.

B.

C.

D.

25.

26.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1

27.

28.下列說法中不能提高梁的抗彎剛度的是()。

A.增大梁的彎度B.增加梁的支座C.提高梁的強(qiáng)度D.增大單位面積的抗彎截面系數(shù)

29.當(dāng)x→0時(shí),x2是x-ln(1+x)的().

A.較高階的無窮小B.等價(jià)無窮小C.同階但不等價(jià)無窮小D.較低階的無窮小

30.

31.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.

B.

C.

D.

32.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo)f(x)>0,則在(0,1)內(nèi)f(x)().

A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量

33.

34.

在x=0處()。A.間斷B.可導(dǎo)C.可微D.連續(xù)但不可導(dǎo)

35.

36.當(dāng)x→0時(shí),x是ln(1+x2)的

A.高階無窮小B.同階但不等價(jià)無窮小C.等價(jià)無窮小D.低階無窮小37.A.0B.2C.2f(-1)D.2f(1)38.微分方程y+y=0的通解為().A.A.

B.

C.

D.

39.A.f(1)-f(0)

B.2[f(1)-f(0)]

C.2[f(2)-f(0)]

D.

40.

A.-e

B.-e-1

C.e-1

D.e

41.設(shè)y=f(x)在[0,1]上連續(xù),且f(0)>0,f(1)<0,則下列選項(xiàng)正確的是

A.f(x)在[0,1]上可能無界

B.f(x)在[0,1]上未必有最小值

C.f(x)在[0,1]上未必有最大值

D.方程f(x)=0在(0,1)內(nèi)至少有一個(gè)實(shí)根

42.若y(x-1)=x2-1,則y'(x)等于()A.2x+2B.x(x+1)C.x(x-1)D.2x-1

43.lim(x2+1)=

x→0

A.3

B.2

C.1

D.0

44.級數(shù)(k為非零正常數(shù))().A.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)45.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)

46.

47.A.A.-(1/2)B.1/2C.-1D.248.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)

49.

50.

二、填空題(20題)51.

52.

53.

54.

55.過點(diǎn)M0(2,0,-1)且平行于的直線方程為______.

56.

57.設(shè)y=1nx,則y'=__________.58.級數(shù)的收斂區(qū)間為______.

59.

60.

61.

62.63.為使函數(shù)y=arcsin(u+2)與u=|x|-2構(gòu)成復(fù)合函數(shù),則x所屬區(qū)間應(yīng)為__________.64.

65.

66.67.

68.69.

70.三、計(jì)算題(20題)71.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

72.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

73.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

74.求微分方程的通解.

75.求微分方程y"-4y'+4y=e-2x的通解.

76.求曲線在點(diǎn)(1,3)處的切線方程.77.78.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.79.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.80.

81.82.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.83.證明:84.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).85.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則86.

87.

88.

89.

90.將f(x)=e-2X展開為x的冪級數(shù).四、解答題(10題)91.計(jì)算

92.

93.94.95.96.所圍成的平面區(qū)域。97.

98.將f(x)=e-2x展開為x的冪級數(shù),并指出其收斂區(qū)間。

99.

100.求,其中區(qū)域D是由曲線y=1+x2與y=0,x=0,x=1所圍成.五、高等數(shù)學(xué)(0題)101.

________.

六、解答題(0題)102.

參考答案

1.B

2.B本題考查的知識點(diǎn)為級數(shù)收斂性的定義。

3.A∵f'(x)<0,f(x)單減;f''(x)<0,f(x)凸∴f(x)在(a,b)內(nèi)單減且凸。

4.A

5.D本題考查的知識點(diǎn)為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系.由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項(xiàng)D正確,C不正確.由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確.

6.A

7.D

8.D

9.C

10.D本題考查的知識點(diǎn)為重要極限公式與無窮小性質(zhì).

注意:極限過程為x→∞,因此

不是重要極限形式!由于x→∞時(shí),1/x為無窮小,而sin2x為有界變量.由無窮小與有界變量之積仍為無窮小的性質(zhì)可知

11.C

12.D

13.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。

14.B解析:

15.A

16.A解析:

17.D本題考查的知識點(diǎn)為極限與左極限、右極限的關(guān)系.

由于f(x)為分段函數(shù),點(diǎn)x=1為f(x)的分段點(diǎn),且在x=1的兩側(cè),f(x)的表達(dá)式不相同,因此應(yīng)考慮左極限與右極限.

18.C

19.C本題考查的知識點(diǎn)為極限、連續(xù)與可導(dǎo)性的關(guān)系.

函數(shù)f(x)在點(diǎn)x0可導(dǎo),則f(x)在點(diǎn)x0必連續(xù).

函數(shù)f(x)在點(diǎn)x0連續(xù),則必定存在.

函數(shù)f(x)在點(diǎn)x0連續(xù),f(x)在點(diǎn)x0不一定可導(dǎo).

函數(shù)f(x)在點(diǎn)x0不連續(xù),則f(x)在點(diǎn)x0必定不可導(dǎo).

這些性質(zhì)考生應(yīng)該熟記.由這些性質(zhì)可知本例應(yīng)該選C.

20.C本題考查的知識點(diǎn)為基本導(dǎo)數(shù)公式.

可知應(yīng)選C.

21.C

∵x=0,1,2,是f(x)的三個(gè)孤立間斷∴有3個(gè)間斷點(diǎn)。

22.D

23.C

24.B本題考查的知識點(diǎn)為級數(shù)收斂性的定義.

25.B

26.B由導(dǎo)數(shù)的定義可知

可知,故應(yīng)選B。

27.A解析:

28.A

29.C解析:本題考查的知識點(diǎn)為無窮小階的比較.

由于

可知當(dāng)x→0時(shí),x2與x-ln(1+x)為同階但不等價(jià)無窮?。蕬?yīng)選C.

30.B解析:

31.C

32.A本題考查的知識點(diǎn)為利用導(dǎo)數(shù)符號判定函數(shù)的單調(diào)性.

由于f(x)在(0,1)內(nèi)有f(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.

33.D

34.D①∵f(0)=0,f-(0)=0,f+(0)=0;∴f(x)在x=0處連續(xù);∵f-"(0)≠f"(0)∴f(x)在x=0處不可導(dǎo)。

35.A

36.D解析:

37.C本題考查了定積分的性質(zhì)的知識點(diǎn)。

38.D本題考查的知識點(diǎn)為-階微分方程的求解.

可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作-階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解.

解法1將方程認(rèn)作可分離變量方程.

解法2將方程認(rèn)作-階線性微分方程.由通解公式可得

解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:

特征方程為r+1=0,

特征根為r=-1,

39.D本題考查的知識點(diǎn)為定積分的性質(zhì);牛頓-萊布尼茨公式.

可知應(yīng)選D.

40.C所給問題為反常積分問題,由定義可知

因此選C.

41.D

42.A因f(x-1)=x2-1,故f(x)=(x+1)2-1=x2+2x,則f'(x)=2x+2.

43.C

44.A本題考查的知識點(diǎn)為無窮級數(shù)的收斂性.

由于收斂,可知所給級數(shù)絕對收斂.

45.B本題考查的知識點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。

46.A

47.A

48.A本題考查的知識點(diǎn)為無窮級數(shù)的收斂性。

49.C

50.C

51.

解析:

52.5

53.22解析:

54.

55.

56.-ln2

57.58.(-∞,+∞)本題考查的知識點(diǎn)為求冪級數(shù)的收斂區(qū)間.

59.260.3yx3y-1

61.

62.63.[-1,164.本題考查的知識點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由于z=x2+3xy+2y2-y,可得

65.坐標(biāo)原點(diǎn)坐標(biāo)原點(diǎn)

66.

本題考查的知識點(diǎn)為二階常系數(shù)線性微分方程的求解.

67.

68.發(fā)散

69.

70.>1

71.

72.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

73.

74.

75.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

76.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

77.

78.

79.函數(shù)的定義域?yàn)?/p>

注意

80.

81.

82.由二重

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論