版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
計算力學Forlinearlyelasticdeformationsofalinearspring,Figure1.5
Force-deflectionrelationforalinearelasticspring.Theslopeoftheforce-deflectionlineisthespringconstantsuchthatTherefore,theworkrequiredtodeformsuchaspringis(1.40)springconstant,i.e.,stiffnessStrainenergyMechanicalwork2weobservethattheworkandresultingelasticpotentialenergyarequadraticfunctionsofdisplacementUtilizingEquation1.28,(1.41)thisresultisconvertedtoadifferentformasfollows:(1.42)whereisthetotalvolumeofdeformedmaterial[1.28]thestrainenergycanbewrittenas3thequantityisstrainenergyperunitvolume,alsoknownasstrainenergydensity.Ingeneral,foruniaxialloading,thestrainenergyperunitvolumeisdefinedby(1.43)Equation1.43representstheareaundertheelasticstress-straindiagram.Strainenergy4Castigliano’sFirstTheoremForanelasticsysteminequilibrium,thepartialderivativeoftotalstrainenergywithrespecttodeflectionatapointisequaltotheappliedforceinthedirectionofthedeflectionatthatpoint.Consideranelasticbodysubjectedtoforcesforwhichthetotalstrainenergyisexpressedas(1.44)whereisthedeflectionatthepointofapplicationofforce,inthedirectionofthelineofactionoftheforce.5
Ifallpointsofloadapplicationarefixedexceptone,say,i,andthatpointismadetodeflectaninfinitesimalamountbyanincrementalinfinitesimalforce,thechangeinstrainenergyis(1.45)whereitisassumedthattheoriginalforceisconstantduringtheinfinitesimalchange.TheintegralterminEquation1.45involvestheproductofinfinitesimalquantitiesandcanbeneglectedtoobtain(1.46)ignored6whichinthelimitasapproacheszerobecomes(1.47)Review:Castigliano’sFirstTheoremForanelasticsysteminequilibrium,
thepartialderivativeoftotalstrainenergywithrespecttodeflection
atapoint
isequalto
the
appliedforce
inthedirectionofthedeflectionatthatpoint.ThefirsttheoremofCastiglianoisapowerfultoolforfiniteelementformulation,asisnowillustratedforthebarelement.7CombiningEquations1.30,1.31,and1.43,thetotalstrainenergyforthebarelementisgivenby(1.48)ApplyingCastigliano’stheoremwithrespecttoeachdisplacementyields(1.49)(1.50)whichareobservedtobeidenticaltoEquations1.33and1.34.[1.33]
[1.34][1.30][1.43][1.31]8Forrotationaldisplacements.Inthecaseofrotation,thepartialderivativeofstrainenergywithrespecttorotationaldisplacementisequaltothemoment/torqueappliedatthepointofconcerntheapplicationofthefirsttheoremofCastiglianointermsofasimpletorsionalmember,isillustratedinthefollowingexample.(1.35)
Writteninmatrixformas9EXAMPLE1.2AsolidcircularshaftofradiusRandlengthLissubjectedtoconstanttorqueT.Theshaftisfixedatoneend,asshowninFigure1.6.FormulatetheelasticstrainenergyintermsoftheangleoftwistatandshowthatCastigliano’sfirsttheoremgivesthecorrectexpressionfortheappliedtorque.■
SolutionFromstrengthofmaterialstheory,theshearstressatanycrosssectionalongthelengthofthememberisgivenbyFigure1.6Circularcylindersubjectedtotorsion.10thestrainenergyiswherewehaveusedthedefinitionofthepolarmomentofinertiawhererisradialdistancefromtheaxisofthememberandJispolarmomentofinertiaofthecrosssection.Forelasticbehavior,wehave
theangleoftwistattheendofthememberis11sothestrainenergycanbewrittenasPerCastangliano’sfirsttheorem,whichisexactlytherelationshownbystrengthofmaterialstheory
thestrainenergyforanelasticsystemisaquadraticfunctionofdisplacements;Therefore,applicationofCastigliano’sfirsttheoremresultsinlinearrelationshipbetweendisplacementstoappliedforces.Thisstatementfollowsfromthefactthataderivativeofaquadratictermislinear.12EXAMPLE1.3(a)ApplyCastigliano’sfirsttheoremtothesystemoffourspringelementsdepictedinFigure1.7toobtainthesystemstiffnessmatrix.Theverticalmembersatnodes2and3aretobeconsideredrigid.(b)Solveforthedisplacementsandthereactionforceatnode1if=4N/mm=6N/mm=3N/mm=-30N=0=50NFigure1.7Fourspringelements.■
Solution(a)
Thetotalstrainenergyofthesystemoffourspringsisexpressedintermsofthenodaldisplacementsandspringconstantsas13ApplyingCastigliano’stheorem,usingeachnodaldisplacementinturn,writteninmatrixformasandthesystemstiffnessmatrixisthusobtainedviaCastigliano’stheorem.14(b)Substitutingthespecifiednumericalvalues,thesystemequationsbecomeEliminatingtheconstraintequation,theactivedisplacementsaregovernedbywesolvetheequation:toconvertthecoefficientmatrix(thestiffnessmatrix)toupper-triangularform;thatis,alltermsbelowthemaindiagonalbecomezero.Step1.Multiplythefirstequation(row)by12,multiplythesecondequation(row)by16,addthetwoandreplacethesecondequationwiththeresultingequationtoobtain15Step2.Multiplythethirdequationby32,addittothesecondequation,andreplacethethirdequationwiththeresult.Thisgivesthetriangularizedformdesired:Inthisform,theequationscannowbesolvedfromthe“bottomtothetop.”Thereactionforceatnode1isobtainedfromtheconstraintequationweobservesystemequilibriumsincetheexternalforcessumtozeroasrequired.161.5MINIMUMPOTENTIALENERGY
Theprincipleofminimumpotentialenergyisstatedasfollows:Ofalldisplacementstatesofabodyorstructure,subjectedtoexternalloading,thatsatisfythegeometricboundaryconditions(imposeddisplacements),thedisplacementstatethatalsosatisfiestheequilibriumequationsissuchthatthetotalpotentialenergyisaminimumforstableequilibrium.Thetotalpotentialenergyincludes:thestoredelasticpotentialenergy(thestrainenergy)aswellasthepotentialenergyofappliedloads
---thetotalpotentialenergy---thestrainenergy
---thepotentialenergyassociatedwithexternalforces
Thetotalpotentialenergyis(1.51)17wewilldealonlywithelasticsystemssubjectedtoconservativeforces.Aconservativeforceisdefinedasonethatdoesmechanicalworkindependentofthepathofmotionandsuchthattheworkisreversibleorrecoverable.Themostcommonexampleofanonconservativeforceistheforceofslidingfriction.Asthefrictionforcealwaysactstoopposemotion,theworkdonebyfrictionforcesisalwaysnegativeandresultsinenergyloss.Defination:18Therefore,themechanicalworkofaconservativeforceisconsideredtobealossinpotentialenergy;thatis,(1.52)whereWisthemechanicalwork,thetotalpotentialenergyisthengivenby(1.53)thestrainenergytermisaquadraticfunctionofsystemdisplacementsandtheworktermWisalinearfunctionofdisplacements.Rigorously,theminimizationoftotalpotentialenergyisaprobleminthecalculusofvariations.19Here,wesimplyimposetheminimizationprincipleofcalculusofmultiplevariablefunctions.atotalpotentialenergyexpressionthatisafunctionofNdisplacementsthatis,(1.54)thenthetotalpotentialenergywillbeminimizedif(1.55)Equation1.55willbeshowntorepresentalgebraicequations,whichformthefiniteelementapproximationtothesolutionofthedifferentialequation(s)governingtheresponseofastructuralsystem.Thiscanbeillustratedbythefollowingexample.20RepeatthesolutiontoExample1.3usingtheprincipleofminimumpotentialenergy.EXAMPLE1.4
Figure1.7Fourspringelements.=4N/mm=6N/mm=3N/mm=-30N=0=50N21Hence,thetotalpotentialenergyisexpressedas
andthepotentialenergyofappliedforcesisPerthepreviousexamplesolution,theelasticstrainenergyis■
Solution
22
theprincipleofminimumpotentialenergyrequiresthatgivinginsequence=1,4,thealgebraicequations
23whenwritteninmatrixform,areandcanbeseentobeidenticaltothepreviousresult.WenowreexaminetheenergyequationoftheExample1.4todevelopamoregeneralform,Thesystemorglobaldisplacementvectoris(1.56)________________________________________________________________24and,asderived,theglobalstiffnessmatrixis(1.57)Ifweformthematrixtripleproduct
(1.58)andcarryoutthematrixoperations,wefindthattheexpressionisidenticaltothestrainenergyofthesystem.Ifthestrainenergycanbeexpressedintheformofthistripleproduct,thestiffnessmatrixwillhavebeenobtained,sincethedisplacementsarereadilyidentifiable.25Homework:Problem1.1,1.3,1.4,1.5,1.7andForthespringassemblyofFigureP1.1,usingthesystemassemblyproceduredeterminetheglobalstiffnessmatrix.1.3ForthespringassemblyofFigureP1.3,determineforce,requiredtodisplacenode2anamount=0.75in.totheright.Alsocomputedisplacementofnode3.Given=50lb./in.and=25l
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年鄭州升達經(jīng)貿(mào)管理學院單招綜合素質(zhì)考試參考題庫含詳細答案解析
- 2026年廊坊衛(wèi)生職業(yè)學院單招職業(yè)技能考試備考試題含詳細答案解析
- 2026年南昌工學院單招綜合素質(zhì)筆試備考試題含詳細答案解析
- 2026年山西衛(wèi)生健康職業(yè)學院單招綜合素質(zhì)考試模擬試題含詳細答案解析
- 2026年新疆石河子職業(yè)技術(shù)學院高職單招職業(yè)適應性測試模擬試題及答案詳細解析
- 2026年蘭州科技職業(yè)學院單招綜合素質(zhì)考試模擬試題含詳細答案解析
- 2026年安順職業(yè)技術(shù)學院高職單招職業(yè)適應性測試備考試題及答案詳細解析
- 2026年上海對外經(jīng)貿(mào)大學單招職業(yè)技能考試備考題庫含詳細答案解析
- 2026年南京特殊教育師范學院高職單招職業(yè)適應性測試模擬試題及答案詳細解析
- 2026年江西科技職業(yè)學院單招綜合素質(zhì)筆試參考題庫含詳細答案解析
- 2026貴州貴陽市安航機械制造有限公司招聘8人考試重點試題及答案解析
- 2026重慶高新開發(fā)建設(shè)投資集團招聘3人備考考試試題及答案解析
- 2026年度宣城市宣州區(qū)森興林業(yè)開發(fā)有限公司第一批次員工公開招聘筆試參考題庫及答案解析
- 老年人管理人員培訓制度
- 2025年湖南常德市鼎城區(qū)面向全市選調(diào)8名公務員備考題庫及答案詳解(新)
- 2026年高考時事政治時事政治考試題庫及答案(名校卷)
- 2026年新能源汽車動力電池回收體系構(gòu)建行業(yè)報告
- 2026年空天科技衛(wèi)星互聯(lián)網(wǎng)應用報告及未來五至十年全球通信創(chuàng)新報告
- 2026四川成都市錦江區(qū)國有企業(yè)招聘18人筆試備考試題及答案解析
- 2025學年度人教PEP五年級英語上冊期末模擬考試試卷(含答案含聽力原文)
- GA/T 172-2005金屬手銬
評論
0/150
提交評論