2022-2023學(xué)年山西省運城市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第1頁
2022-2023學(xué)年山西省運城市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第2頁
2022-2023學(xué)年山西省運城市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第3頁
2022-2023學(xué)年山西省運城市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第4頁
2022-2023學(xué)年山西省運城市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年山西省運城市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.若x0為f(x)的極值點,則().A.A.f(x0)必定存在,且f(x0)=0

B.f(x0)必定存在,但f(x0)不-定等于零

C.f(x0)不存在或f(x0)=0

D.f(x0)必定不存在

2.A.

B.

C.

D.

3.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為().A.A.

B.

C.

D.不能確定

4.()。A.2πB.πC.π/2D.π/4

5.

6.

7.

8.

9.

10.A.0B.2C.2f(-1)D.2f(1)11.A.A.凹B.凸C.凹凸性不可確定D.單調(diào)減少

12.

13.

14.

15.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.

16.

17.一飛機做直線水平運動,如圖所示,已知飛機的重力為G,阻力Fn,俯仰力偶矩M和飛機尺寸a、b和d,則飛機的升力F1為()。

A.(M+Ga+FDb)/d

B.G+(M+Ga+FDb)/d

C.G一(M+Gn+FDb)/d

D.(M+Ga+FDb)/d—G

18.

19.

20.

二、填空題(20題)21.設(shè)區(qū)域D:0≤x≤1,1≤y≤2,則22.過點Mo(1,-1,0)且與平面x-y+3z=1平行的平面方程為_______.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.38.

39.

40.設(shè)y=ln(x+2),貝y"=________。三、計算題(20題)41.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.42.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.43.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達式;

(2)求S(x)的最大值.

44.將f(x)=e-2X展開為x的冪級數(shù).45.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.46.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.47.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則48.證明:49.50.

51.

52.求微分方程y"-4y'+4y=e-2x的通解.

53.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

54.55.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.56.

57.求微分方程的通解.

58.

59.

60.求曲線在點(1,3)處的切線方程.四、解答題(10題)61.62.在曲線y=x2(x≥0)上某點A(a,a2)處作切線,使該切線與曲線及x軸所圍成的圖形的面積為1/12.試求:(1)切點A的坐標(biāo)((a,a2).(2)過切點A的切線方程.

63.設(shè)函數(shù)y=ex+arctanx+π2,求dy.

64.

65.66.設(shè)函數(shù)f(x)=x3-3x2-9x,求f(x)的極大值。

67.

68.設(shè)

69.設(shè)y=x2ex,求y'。

70.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.五、高等數(shù)學(xué)(0題)71.

六、解答題(0題)72.

參考答案

1.C本題考查的知識點為函數(shù)極值點的性質(zhì).

若x0為函數(shù)y=f(x)的極值點,則可能出現(xiàn)兩種情形:

(1)f(x)在點x0處不可導(dǎo),如y=|x|,在點x0=0處f(x)不可導(dǎo),但是點x0=0為f(x)=|x|的極值點.

(2)f(x)在點x0可導(dǎo),則由極值的必要條件可知,必定有f(x0)=0.

從題目的選項可知應(yīng)選C.

本題常見的錯誤是選A.其原因是考生將極值的必要條件:“若f(x)在點x0可導(dǎo),且x0為f(x)的極值點,則必有f(x0)=0”認為是極值的充分必要條件.

2.C

3.B本題考查的知識點為定積分的幾何意義.

由定積分的幾何意義可知應(yīng)選B.

常見的錯誤是選C.如果畫個草圖,則可以避免這類錯誤.

4.B

5.C解析:

6.C解析:

7.A

8.B

9.B

10.C本題考查了定積分的性質(zhì)的知識點。

11.A本題考查的知識點為利用二階導(dǎo)數(shù)符號判定曲線的凹凸性.

12.B

13.C

14.D

15.B本題考查的知識點為導(dǎo)數(shù)的運算.

f(x)=2sinx,

f'(x)=2(sinx)'=2cosx,

可知應(yīng)選B.

16.D

17.B

18.A解析:

19.C解析:

20.B21.本題考查的知識點為二重積分的計算。

如果利用二重積分的幾何意義,可知的值等于區(qū)域D的面積.由于D是長、寬都為1的正形,可知其面積為1。因此22.由于已知平面的法線向量,所求平面與已知平面平行,可取所求平面法線向量,又平面過點Mo(1,-1,0),由平面的點法式方程可知,所求平面為

23.-3sin3x-3sin3x解析:24.

25.y+3x2+x

26.

27.e228.0.

本題考查的知識點為連續(xù)函數(shù)在閉區(qū)間上的最小值問題.

通常求解的思路為:

29.

30.

31.1/3本題考查了定積分的知識點。

32.0

33.2yex+x

34.3/23/2解析:

35.(-24)(-2,4)解析:

36.連續(xù)但不可導(dǎo)連續(xù)但不可導(dǎo)

37.38.2.

本題考查的知識點為極限的運算.

能利用洛必達法則求解.

如果計算極限,應(yīng)該先判定其類型,再選擇計算方法.當(dāng)所求極限為分式時:

若分子與分母的極限都存在,且分母的極限不為零,則可以利用極限的商的運算法則求極限.

若分子與分母的極限都存在,但是分子的極限不為零,而分母的極限為零,則所求極限為無窮大量.

檢查是否滿足洛必達法則的其他條件,是否可以進行等價無窮小量代換,所求極限的分子或分母是否有非零因子,可以單獨進行極限運算等.

39.

本題考查的知識點為二元函數(shù)的偏導(dǎo)數(shù).

40.

41.

42.函數(shù)的定義域為

注意

43.

44.

45.

46.

列表:

說明

47.由等價無窮小量的定義可知

48.

49.50.由一階線性微分方程通解公式有

51.

52.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

53.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價格上漲1%需求量減少2.5%

54.

55.由二重積分物理意義知

56.

57.

58.

59.60.曲線方程為,點(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

61.62.由于y=x2,則y'=2x,曲線y=x2上過點A(a,a2)的切線方程為y-a2=2a(x-a),即y=2ax-a2,曲線y=x2,其過點A(a,a2)的切線及x軸圍成的平面圖形的面積

由題設(shè)S=1/12,可得a=1,因此A點的坐標(biāo)為(1,1).過A點的切線方程為y-1=2(x-1)或y=2x-1.解析:本題考查的知識點為定積分的幾何意義和曲線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論