ChFuctionsetc離散數學英文實用_第1頁
ChFuctionsetc離散數學英文實用_第2頁
ChFuctionsetc離散數學英文實用_第3頁
ChFuctionsetc離散數學英文實用_第4頁
ChFuctionsetc離散數學英文實用_第5頁
已閱讀5頁,還剩46頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

會計學1ChFuctionsetc離散數學英文實用DefinitionofaFunctionAfunction

fromsetAtosetB,denotedbyf:AB,istheassignmentofexactlyoneelementofBtoeachelementofA

Givenf:AB,andiff(a)=b(fmapsatob)

whereaAandbB,thenAisthedomain(定義域)offBistheco-domain(伴域)offbistheimageofaaisthepre-image(原像)ofbRange(值域)off:setofallimagesofelementsofArangeco-domainpre-imageABfab=f(a)domainimageExample:f:ZZ,f(x)=x2domain/co-domain:Z=setofintegersrange:perfectsquares{0,1,4,9,...}第1頁/共51頁FunctionsAfunctionf:A

→B

canalsobedefinedasasubsetofA×B(Cartesianproduct).ThissubsetisrestrictedtobearelationwherenotwoelementsoftherelationhavethesamefirstelementSpecifically,afunctionffromAtoBcontainsone,andonlyoneorderedpair(a,b)foreveryelementa∈

A.

x[[xAy[yB(x,y)f]]

[z(x,z)

f

y=z]]第2頁/共51頁FunctionsfromFunctionsIff1andf2aretwofunctionsfromAtoR(realnumbers),theng=f1+f2andh=f1

f2arealsofunctionsfromAtoRdefinedby:g(x)=(f1+f2)(x)=f1(x)+f2(x)h(x)=(f1f2)(x)=f1(x)f2(x)Example:f1(x)=x,f2(x)=x2.(RtoR)(f1+f2)(x)=x+x2(f1f2)(x)=x3第3頁/共51頁FunctionsofSetsf:AB,andSisasubsetofA.Thenwecandefinef:SImage(S)=f(S)ASBf(S)f第4頁/共51頁FunctionExampleThedomainoffisA={a,b,c,d}ThecodomainisB={X,Y,Z}Therangeoffis{Y,Z}Thepre-imageofYisb.TheimageofbisYThepre-imagesofZarea,canddLetS={c,d},f(S)=?LetT={a,b,c},f(T)=?f第5頁/共51頁One-to-one(Injective單射)FunctionsAfunctionfisone-to-oneifandonlyiff(x)=f(y)impliesx=yforallx,yinthedomainoffABfThisisnotallowedExample:f:ZZ,f(x)=x2one-to-one? g:ZZ,g(x)=x3one-to-one? h:Z+Z+,h(x)=x2one-to-one?Thepropositionalstatement?第6頁/共51頁Onto(Surjective滿射)functionsAfunctionffromAtoBisontoifforeveryelementbinBthereisanelementainA,f(a)=b.Co-domain=RangePropositionalStatement?ABfyxThisisnotallowedExample:f:ZZ,f(x)=x2onto?HowaboutZ+Z+?

R+

R+?

第7頁/共51頁One-to-OneAndOntoorOne-to-OneCorrespondence(Bijective雙射)FunctionsAfunctionfisinone-to-onecorrespondenceifitisbothone-to-oneandonto.ABfNumberofelementsinAandBmustbethesamewhentheyarefinite.EveryelementinAisuniquelyassociatedwithexactlyoneelementinB.Examples:f:RR,f(x)=-x?g:Z+Z+,g(x)=x2?

R+R+?第8頁/共51頁ExamplesOntobutnotOne-to-oneOne-to-onebutnotOntoOne-to-oneandOnto第9頁/共51頁Prove/Disprove:fIsOne-to-OneorOnto第10頁/共51頁TheGraphsofFunctionsThegraphofafunctionfisthesetoforderedpairs{(a,b)|ainA,f(a)=b}.ThisisasubsetoftheCartesianproductofABExample:f(n)=2n+1

fromZtoZnf第11頁/共51頁TheGraphsofFunctionsExample:f(n)=n2

fromZtoZ第12頁/共51頁IncreasingandDecreasingFunctionsStrictlyIncreasingFunctionsStrictlyDecreasingFunctionsx,yrealxy<f(x)f(y)>x’y’<f(y’)f(x’)>decreasingincreasingStrictlyincreasingandstrictlydecreasingfunctionsareone-to-onef(a)=f(b)第13頁/共51頁ExamplesDeterminewhichfunctionsareone-to-one,onto,one-to-oneandonto,strictlyincreasingorstrictlydecreasingf(x)=x,RRf(x)=x5,RRf(x)=|x|,ZZ,orZNF(x)=2x,Z+E,E={xZ+|xiseven}

NE?f(x)=sin(x),RR,R[-1,1]F(x)=x+sin(x),RR第14頁/共51頁F(x)=x+sin(x)StrictlyIncreasing第15頁/共51頁InverseFunctionsLetfbeaone-to-oneandontofunctionfromAtoB.TheinversefunctionoffisthefunctionthatassignstobinBtheelementainAsuchthatf(a)=b.ABinverseoffABfIfafunctionisnotone-to-oneandontoitisnotinvertible.f:RR,f(x)=x2.

Isf(x)=x+1invertibleoverRR?OverZZ?OverNN?第16頁/共51頁CompositionsofFunctionsAcompositionof2functionsg:ABandf:BCisdefinedby: :ACg(a)fB第17頁/共51頁CompositionsofFunctions:ExampleRangeofgmustbesubsetofdomainoff!ABCgCfABThisisonefunctionfromAtoC第18頁/共51頁CompositionsofFunctions:Fact1Theorem:Letg:ABandf:BC.If

fgisone-to-one,thengisalsoone-to-oneProof:ifabthenf(g(a))f(g(b))sincethecompositionisone-to-one(byassumption)Bycontradiction.Ifgisnotone-to-one,thena,bA,abandg(a)=g(b).Thenfwouldhavetwodifferentimagesforthesamepoint!Butfgisone-to-oneandf(g(a))f(g(b))wheneverab.Contradiction!第19頁/共51頁CompositionsofFunctions:Fact2Theorem:Letg:ABandf:BC.If

fgisone-to-oneandgisonto,thenfisalsoone-to-oneProofbycontradiction:iffisnotone-to-one,c,dB,c

dandf(c)=f(d).Sincegisonto,everyelementinBhasapreimage:a,bA

abg(a)=candg(b)=d.Wehaveacontradictionsinceabandf(g(a))=f(g(b))!

(fgisnotone-to-one)第20頁/共51頁CompositionsofFunctions:ExamplesIff(x)=x2andg(x)=2x+1,thenf(g(x))=(2x+1)2=4x2+4x+1,andg(f(x))=2x2+1Iff(x)=3x2+5x+1andg(x)=x3+1,thenf(g(x))=3(x3+1)2+5(x3+1)+1and

g(f(x))=(3x2+5x+1)3+1第21頁/共51頁FloorandCeilingFunctionsy=xy=xFloorfunctionf:RZ,xRnZ(f(x)=n(x–1<nx)).Wedenotef(x)=xCeilingfunctionf:RZ,xRnZ(f(x)=n(xn<x+1)).Wedenotef(x)=x第22頁/共51頁PropertiesoftheFloorandCeilingFunctions(1a)x=nifandonlyifn

x<n+1(1b)x=nifandonlyifn1<x

n(1c)x=nifandonlyifx

1<n

x(1d)x=nifandonlyifx

n<x+1(2)x1<x

x

x<x+1(3a)

x=

x(3b)

x=

x(4a)

x+n=x+n(4b)x+n=x+nnx<n+1=>0x–n<1=>-x–n<1–x=>xn>x–1=>(applynegativesignstoabove)x1<nxItisobviousthatwecangofrom(1c)to(1a)nisanintegerShowthat(1a)=(1c)第23頁/共51頁PropertiesoftheFloorandCeilingFunctionsProve(3a)that-x=-xProof:

Let-x=m,thenbydefinition,mZand

m-x<m+1(1a)Weneedtoshowm=-x.Or,toshow

x=-m(i).Bydefinitionof(i)and(1b)

-m–1<

x

-m.Butthisisequivalentto(1a)!(Applyanegativesigntotheinequalities)第24頁/共51頁PropertiesoftheFloorandCeilingFunctionsProve(4a)that

x+n=x+nProof:

Let

x+n=m,thenbydefinitionmZandmx+n<m+1(1a)Weneedtoshowx+n=m.Thisisequivalenttoshowx=m–n,orbydefinition,m–nx<m–n+1.Butthiscanbeobtainedfrom(1a)byaddingneverysideoftheinequalities第25頁/共51頁ApplicationofFloor-CeilingFunctionsNumberrounding(totheclosestinteger,四舍五入)

Round(34.4)=34

Round(34.5)=35Thiscanbeimplementedbyceilingorflooringfunctions

Round(a)=a+0.5Examples

Round(34.4)=34.4+0.5=34.9=34

Round(34.5)=34.5+0.5=35.0=35第26頁/共51頁ApplicationofFloor-CeilingFunctionsAnelectronicfileinacomputerhasasizeof1024bytes.Arecordthatisusedtostoreastudent’sinformation,suchasname,birthdate,year,class,…,requires15bytesQuestion:Howmanyrecordscanbestoredinafile?Answer:1024/15=68.2666…=68第27頁/共51頁ApplicationofFloor-CeilingFunctionsExample:ATMcells(packets)haveafixedsize:Transmissionrate:500kilobitspersecond(kbps)Question:howmanycellscanbetransmittedinoneminute?Answer:Numberofbitscanbetransmittedinoneminute

500,00060=30,000,000NumberofbitsinanATMpacket

538=424NumberofATMcellscanbetransmittedinoneminute30,000,000/424=70754.717=7075453bytes052第28頁/共51頁SequencesDefinition:

Asequenceisafunctionfromasubsetofthenaturalnumbers(usuallyoftheform

{0,1,2,...})toasetSNotation:

Iffisafunctionfrom{0,1,2,...n,…}toS.Weletan=f(n)andS={a0,a1,…,an,…},orsimplyS={an}aniscalleda(general)term(項)ofthesequence第29頁/共51頁SequencesExample:

Considerthesequencewhere

第30頁/共51頁GeometricProgressionDefinition:Ageometricprogression

isasequenceoftheform:wheretheinitialterm

aandthecommonratiorarerealnumbers.xi=ari,i=0,1,2,…Examples:Leta=1

andr=?1.Then:Leta=2

andr=5.Then:Leta=6

andr=1/3.Then:第31頁/共51頁ArithmeticProgressionDefinition:Anarithmeticprogression

isasequenceoftheform:wheretheinitialterm

aandthecommondifference

darerealnumbers.xi=a+id,i=0,1,2,…Examples:Leta=?1

andd=4:Leta=7

andd=?3:Leta=1andd=2:第32頁/共51頁SequenceExampleHowcanwefindthenthterm(an)ofthissequence?

5,11,17,23,29,35,41,47,53,59,…

Sinceeachnexttermisobtainedbyadding6tothepreviousterm(arithmeticprogression):

a0=5,andwhenn>0,commondifference=6

an=an-1+6=an-2+6+6=an-2+2(6)

=…=a0+n(6)=5+6n

第33頁/共51頁SequenceExampleHowcanwefindthenthtermofthissequence?

1,7,25,79,241,727,2185,6559,19681,59047,…

Notethateachnexttermmustbeobtainedbysomeexponentialoperation(geometricprogression),becausewefindoutthatthecurrenttermisabout3timesofthepreviousterm.Whentry3n+1,n=0,1,2,…,wefindadifferenceof2.Therefore

an=3n+1–2,forn=0,1,2,…Wewillcomebacktothissequenceagain,…第34頁/共51頁SequenceExampleHowcanwefindthenthtermofthissequence?

1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,…

Weneedtotryveryhardtofindthenthtermofthesequence.Somethingyoumusttryisthefloororceilingfunctions第35頁/共51頁TheSummationNotationThesummationnotation,mi=k

ak,isusedtoexpressthesumofthetermsmton

ak+ak+1+…+amfromthesequence{an}.Inthisnotation,iiscalledtheindexofsummation,kisthelowerlimitandmtheupperlimitoftheindex第36頁/共51頁SummationExamplesi=1j=0Somesumsofinfinitesequencescanbecalculated,ortheyconverge第37頁/共51頁SummationExampleProvethatMethod1:fromtheknownequation:

(x–1)(xn+xn-1+…+x+1)=xn+1–1Method2:Letthesum=S.Thenmultiplyronbothsides,…第38頁/共51頁SequenceExampleAgain:ApplicationofSummationHowcanwefindthenthtermofthesequence

1,7,25,79,241,727,2185,6559,19681,59047,…Leta0=1andn>0.Then,

an=3an-1+4=3(3an-2+4)+4=

32an-2+4(31+30)=…=3na0+4(3n-1+3n-2+…+31+30)=3n+4(3n–1)/(3–1)

(Usedthesummationprovedinthelastslide)

=3n+2(3n–1)=33n–2=3n+1–2Wearrivedatthesameresultbutusedageneralapproach第39頁/共51頁第40頁/共51頁SummationExamples[10x11x(2(10)+1)]/6–[4x5x(2(4)+1)]/6=2310/6–180/6=385–30=355FindNestedsummation:4i=1

3j=1ij=4i=1(i+2i+3i) =4i=16i =6+12+18+24=60第41頁/共51頁SummationExamplesFindthesumofS=21+22+23+24...+228

S+1=20+21+22+…+228 =(229–1)/(2–1)(1stequationinthetable) =

229–1So,S=229–2FindthesumofS=1+1/2+1/4+1/8+1/16+1/32+....S=(1/2)0+(1/2)1+(1/2)2+(1/2)3+… =1/(1–?)(5thequationinthetable) =2第42頁/共51頁CardinalityDefinition:Twosetshavethesamecardinalityifandonlyifthereisaone-to-onecorrespondence(one-to-oneandonto)betweenthemNote:thismakesitpossibletocomparethecardinalitiesoftwoinfinitesetsDefinition:

Asetthatiseitherfiniteorhasthesamecardinalityasthesetofpositiveintegers(Z+)iscalledcountable第43頁/共51頁CardinalityExampleConsiderthesequence{an},an=n2,n{1,2,3,4...}Superficially,thereseemtobemuchlesselementsin{an}thaninZ+(sinceweskipalot).

Hereistheone-to-oneandontomapping:1234567....infinity(Intuitively:countablemeansyoucanenumeratethem)Sotheset{an}iscountablebecause|{an}|=|Z+|第44頁/共51頁CardinalityExampleNaturalnumbersetN={0,1,2,3,…}iscountableTheone-to-onecorrespondence(bijection)

f:Z+

Nis

f(n)=n–1Thisshows|N|=|Z+|第45頁/共51頁CardinalityExampleExample:ShowthatthesetofintegersZiscountable.Solution:Zcanbelistedinasequence:

Z:0,1,?1,2,?2,3,?3,4,?4,……

N: 0,1,2,3,4,5,6,7,8,……Orwecandefineabijectio

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論