下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
數(shù)據(jù)挖掘十大經(jīng)典算法介紹國(guó)際權(quán)威的學(xué)術(shù)組織theIEEEInternationalConferenceonDataMining(ICDM)2006年12月評(píng)選出了數(shù)據(jù)挖掘領(lǐng)域的十大經(jīng)典算法:C4.5,k-Means,SVM,Apriori,EM,PageRank,AdaBoost,kNN,NaiveBayes,andCART.C4.5C4.5算法是機(jī)器學(xué)習(xí)算法中的一種分類決策樹算法,其核心算法是ID3算法.C4.5算法繼承了ID3算法的優(yōu)點(diǎn),并在以下幾方面對(duì)ID3算法進(jìn)行了改進(jìn):1)用信息增益率來選擇屬性,克服了用信息增益選擇屬性時(shí)偏向選擇取值多的屬性的不足;2)在樹構(gòu)造過程中進(jìn)行剪枝;3)能夠完成對(duì)連續(xù)屬性的離散化處理;4)能夠?qū)Σ煌暾麛?shù)據(jù)進(jìn)行處理。C4.5算法有如下優(yōu)點(diǎn):產(chǎn)生的分類規(guī)則易于理解,準(zhǔn)確率較高。其缺點(diǎn)是:在構(gòu)造樹的過程中,需要對(duì)數(shù)據(jù)集進(jìn)行多次的順序掃描和排序,因而導(dǎo)致算法的低效。Thek-meansalgorithm即K-Means算法k-meansalgorithm算法是一個(gè)聚類算法,把n的對(duì)象根據(jù)他們的屬性分為k個(gè)分割,k〈n。它與處理混合正態(tài)分布的最大期望算法很相似,因?yàn)樗麄兌荚噲D找到數(shù)據(jù)中自然聚類的中心。它假設(shè)對(duì)象屬性來自于空間向量,并且目標(biāo)是使各個(gè)群組內(nèi)部的均方誤差總和最小。3.Supportvectormachines支持向量機(jī),英文為SupportVectorMachine,簡(jiǎn)稱SV機(jī)(論文中一般簡(jiǎn)稱SVM)。它是一種監(jiān)督式學(xué)習(xí)的方法,它廣泛的應(yīng)用于統(tǒng)計(jì)分類以及回歸分析中。支持向量機(jī)將向量映射到一個(gè)更高維的空間里,在這個(gè)空間里建立有一個(gè)最大間隔超平面。在分開數(shù)據(jù)的超平面的兩邊建有兩個(gè)互相平行的超平面。分隔超平面使兩個(gè)平行超平面的距離最大化。假定平行超平面間的距離或差距越大,分類器的總誤差越小一個(gè)極好的指南是C?J?CBurges的《模式識(shí)別支持向量機(jī)指南》。vanderWalt和Barnard將支持向量機(jī)和其他分類器進(jìn)行了比較。4?TheApriorialgorithmApriori算法是一種最有影響的挖掘布爾關(guān)聯(lián)規(guī)則頻繁項(xiàng)集的算法。其核心是基于兩階段頻集思想的遞推算法。該關(guān)聯(lián)規(guī)則在分類上屬于單維、單層、布爾關(guān)聯(lián)規(guī)則。在這里,所有支持度大于最小支持度的項(xiàng)集稱為頻繁項(xiàng)集,簡(jiǎn)稱頻集5?最大期望(EM)算法在統(tǒng)計(jì)計(jì)算中,最大期望(EM,Expectation-Maximization)算法是在概率(probabilistic)模型中尋找參數(shù)最大似然估計(jì)的算法,其中概率模型依賴于無法觀測(cè)的隱藏變量(LatentVariabl)。最大期望經(jīng)常用在機(jī)器學(xué)習(xí)和計(jì)算機(jī)視覺的數(shù)據(jù)集聚(DataClustering)領(lǐng)域。PageRankPageRank是Google算法的重要內(nèi)容。2001年9月被授予美國(guó)專利,專利人是Google創(chuàng)始人之一拉里?佩奇(LarryPage)。因此,PageRank里的page不是指網(wǎng)頁(yè),而是指佩奇,即這個(gè)等級(jí)方法是以佩奇來命名的。PageRank根據(jù)網(wǎng)站的外部鏈接和內(nèi)部鏈接的數(shù)量和質(zhì)量倆衡量網(wǎng)站的價(jià)值。PageRank背后的概念是,每個(gè)到頁(yè)面的鏈接都是對(duì)該頁(yè)面的一次投票,被鏈接的越多,就意味著被其他網(wǎng)站投票越多。這個(gè)就是所謂的“鏈接流行度”——衡量多少人愿意將他們的網(wǎng)站和你的網(wǎng)站掛鉤。PageRank這個(gè)概念引自學(xué)術(shù)中一篇論文的被引述的頻度——即被別人引述的次數(shù)越多,一般判斷這篇論文的權(quán)威性就越高。AdaBoostAdaboost是一種迭代算法,其核心思想是針對(duì)同一個(gè)訓(xùn)練集訓(xùn)練不同的分類器(弱分類器),然后把這些弱分類器集合起來,構(gòu)成一個(gè)更強(qiáng)的最終分類器(強(qiáng)分類器)。其算法本身是通過改變數(shù)據(jù)分布來實(shí)現(xiàn)的,它根據(jù)每次訓(xùn)練集之中每個(gè)樣本的分類是否正確,以及上次的總體分類的準(zhǔn)確率,來確定每個(gè)樣本的權(quán)值。將修改過權(quán)值的新數(shù)據(jù)集送給下層分類器進(jìn)行訓(xùn)練,最后將每次訓(xùn)練得到的分類器最后融合起來作為最后的決策分類器。kNN:k-nearestneighborclassificationK最近鄰(k-NearestNeighbor,KNN)分類算法,是一個(gè)理論上比較成熟的方法,也是最簡(jiǎn)單的機(jī)器學(xué)習(xí)算法之一。該方法的思路是:如果一個(gè)樣本在特征空間中的k個(gè)最相似(即特征空間中最鄰近)的樣本中的大多數(shù)屬于某一個(gè)類別,則該樣本也屬于這個(gè)類別。NaiveBayes在眾多的分類模型中,應(yīng)用最為廣泛的兩種分類模型是決策樹模型(DecisionTreeModel)和樸素貝葉斯模型(NaiveBayesianModel,NBC)。樸素貝葉斯模型發(fā)源于古典數(shù)學(xué)理論,有著堅(jiān)實(shí)的數(shù)學(xué)基礎(chǔ),以及穩(wěn)定的分類效率。同時(shí),NBC模型所需估計(jì)的參數(shù)很少,對(duì)缺失數(shù)據(jù)不太敏感,算法也比較簡(jiǎn)單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。但是實(shí)際上并非總是如此,這是因?yàn)镹BC模型假設(shè)屬性之間相互獨(dú)立,這個(gè)假設(shè)在實(shí)際應(yīng)用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬性個(gè)數(shù)比較多或者屬性之間相關(guān)性較大時(shí),NBC模型的分類效率比不上決策樹模型。而在屬性相關(guān)性較小時(shí),NB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 預(yù)防腎絞痛復(fù)發(fā)的護(hù)理方法
- 2025年辦公設(shè)備采購(gòu)安裝合同協(xié)議
- 倉(cāng)儲(chǔ)中心建設(shè)與布局管理規(guī)范
- 2026 年中職掘進(jìn)技術(shù)(隧道開挖工藝)試題及答案
- 名著測(cè)試題及答案
- 昭通市昭陽(yáng)區(qū)氣候條件
- 基于深度學(xué)習(xí)的醫(yī)學(xué)影像自動(dòng)修復(fù)
- 醫(yī)院培訓(xùn)課件:《患者保護(hù)性約束使用管理制度》
- 碭山中考地理試卷及答案
- 大樹城堡測(cè)試題目及答案
- 林業(yè)和草原局護(hù)林員招聘考試《森林資源管護(hù)》題庫(kù)(答案+解析)
- 中華人民共和國(guó)職業(yè)分類大典是(專業(yè)職業(yè)分類明細(xì))
- 電子票據(jù)管理辦法醫(yī)院
- 電子承兌支付管理辦法
- 學(xué)堂在線 知識(shí)產(chǎn)權(quán)法 章節(jié)測(cè)試答案
- 全檢員考試試題及答案
- 提高住院患者圍手術(shù)期健康宣教知曉率品管圈活動(dòng)報(bào)告
- 應(yīng)急救援個(gè)體防護(hù)
- 黨建陣地日常管理制度
- 車間醫(yī)藥箱管理制度
- 食葉草種植可行性報(bào)告
評(píng)論
0/150
提交評(píng)論