版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知平行于軸的直線分別交曲線于兩點,則的最小值為()A. B. C. D.2.函數(shù)在上的圖象大致為()A. B. C. D.3.已知點P不在直線l、m上,則“過點P可以作無數(shù)個平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關于的判斷條件是()A. B. C. D.5.拋物線的準線方程是,則實數(shù)()A. B. C. D.6.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值7.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題8.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對于恒成立,則的取值范圍是A. B. C. D.9.已知命題,;命題若,則,下列命題為真命題的是()A. B. C. D.10.執(zhí)行如圖所示的程序框圖,若輸出的結果為3,則可輸入的實數(shù)值的個數(shù)為()A.1 B.2 C.3 D.411.已知與函數(shù)和都相切,則不等式組所確定的平面區(qū)域在內(nèi)的面積為()A. B. C. D.12.在中,角的對邊分別為,若.則角的大小為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,的系數(shù)為________.14.一次考試后,某班全班50個人數(shù)學成績的平均分為正數(shù),若把當成一個同學的分數(shù),與原來的50個分數(shù)一起,算出這51個分數(shù)的平均值為,則_________.15.如圖,在體積為V的圓柱中,以線段上的點O為項點,上下底面為底面的兩個圓錐的體積分別為,,則的值是______.16.已知數(shù)列滿足:,,若對任意的正整數(shù)均有,則實數(shù)的最大值是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設橢圓的離心率為,左、右焦點分別為,點D在橢圓C上,的周長為.(1)求橢圓C的標準方程;(2)過圓上任意一點P作圓E的切線l,若l與橢圓C交于A,B兩點,O為坐標原點,求證:為定值.18.(12分)已知橢圓的焦距為,斜率為的直線與橢圓交于兩點,若線段的中點為,且直線的斜率為.(1)求橢圓的方程;(2)若過左焦點斜率為的直線與橢圓交于點為橢圓上一點,且滿足,問:是否為定值?若是,求出此定值,若不是,說明理由.19.(12分)橢圓:()的離心率為,它的四個頂點構成的四邊形面積為.(1)求橢圓的方程;(2)設是直線上任意一點,過點作圓的兩條切線,切點分別為,,求證:直線恒過一個定點.20.(12分)已知三點在拋物線上.(Ⅰ)當點的坐標為時,若直線過點,求此時直線與直線的斜率之積;(Ⅱ)當,且時,求面積的最小值.21.(12分)已知函數(shù),它的導函數(shù)為.(1)當時,求的零點;(2)當時,證明:.22.(10分)如圖,四棱錐中,平面平面,底面為梯形.,且與均為正三角形.為的中點為重心,與相交于點.(1)求證:平面;(2)求三棱錐的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
設直線為,用表示出,,求出,令,利用導數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設直線為,則,,而滿足,那么設,則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點睛】本題考查導數(shù)知識的運用:求單調(diào)區(qū)間和極值、最值,考查化簡整理的運算能力,正確求導確定函數(shù)的最小值是關鍵,屬于中檔題.2、C【解析】
根據(jù)函數(shù)的奇偶性及函數(shù)在時的符號,即可求解.【詳解】由可知函數(shù)為奇函數(shù).所以函數(shù)圖象關于原點對稱,排除選項A,B;當時,,,排除選項D,故選:C.【點睛】本題主要考查了函數(shù)的奇偶性的判定及奇偶函數(shù)圖像的對稱性,屬于中檔題.3、C【解析】
根據(jù)直線和平面平行的性質(zhì),結合充分條件和必要條件的定義進行判斷即可.【詳解】點不在直線、上,若直線、互相平行,則過點可以作無數(shù)個平面,使得直線、都與這些平面平行,即必要性成立,若過點可以作無數(shù)個平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點只能作一個平面同時和兩條直線平行,則與條件矛盾,即充分性成立則“過點可以作無數(shù)個平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【點睛】本題主要考查充分條件和必要條件的判斷,結合空間直線和平面平行的性質(zhì)是解決本題的關鍵.4、B【解析】
根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結束循環(huán),即可得出判斷條件.【詳解】執(zhí)行框圖如下:初始值:,第一步:,此時不能輸出,繼續(xù)循環(huán);第二步:,此時不能輸出,繼續(xù)循環(huán);第三步:,此時不能輸出,繼續(xù)循環(huán);第四步:,此時不能輸出,繼續(xù)循環(huán);第五步:,此時不能輸出,繼續(xù)循環(huán);第六步:,此時要輸出,結束循環(huán);故,判斷條件為.故選B【點睛】本題主要考查完善程序框圖,只需逐步執(zhí)行框圖,結合輸出結果,即可確定判斷條件,屬于常考題型.5、C【解析】
根據(jù)準線的方程寫出拋物線的標準方程,再對照系數(shù)求解即可.【詳解】因為準線方程為,所以拋物線方程為,所以,即.故選:C【點睛】本題考查拋物線與準線的方程.屬于基礎題.6、D【解析】
A.通過線面的垂直關系可證真假;B.根據(jù)線面平行可證真假;C.根據(jù)三棱錐的體積計算的公式可證真假;D.根據(jù)列舉特殊情況可證真假.【詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當,,取為,如下圖所示:因為,所以異面直線所成角為,且,當,,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【點睛】本題考查立體幾何中的綜合應用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內(nèi).7、D【解析】選項A,否命題為“若,則”,故A不正確.選項B,逆命題為“若,則”,為假命題,故B不正確.選項C,由題意知對,都有,故C不正確.選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.8、A【解析】
根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結果.【詳解】為定義在上的偶函數(shù),圖象關于軸對稱又在上是增函數(shù)在上是減函數(shù),即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:【點睛】本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關系轉化為自變量的大小關系,從而利用分離變量法來處理恒成立問題.9、B【解析】解:命題p:?x>0,ln(x+1)>0,則命題p為真命題,則¬p為假命題;取a=﹣1,b=﹣2,a>b,但a2<b2,則命題q是假命題,則¬q是真命題.∴p∧q是假命題,p∧¬q是真命題,¬p∧q是假命題,¬p∧¬q是假命題.故選B.10、C【解析】試題分析:根據(jù)題意,當時,令,得;當時,令,得,故輸入的實數(shù)值的個數(shù)為1.考點:程序框圖.11、B【解析】
根據(jù)直線與和都相切,求得的值,由此畫出不等式組所表示的平面區(qū)域以及圓,由此求得正確選項.【詳解】.設直線與相切于點,斜率為,所以切線方程為,化簡得①.令,解得,,所以切線方程為,化簡得②.由①②對比系數(shù)得,化簡得③.構造函數(shù),,所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切線方程為.即.不等式組即,畫出其對應的區(qū)域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫出圖像如下圖所示,不等式組所確定的平面區(qū)域在內(nèi)的部分如下圖陰影部分所示.直線的斜率為,直線的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B【點睛】本小題主要考查根據(jù)公共切線求參數(shù),考查不等式組表示區(qū)域的畫法,考查圓的方程,考查兩條直線夾角的計算,考查扇形面積公式,考查數(shù)形結合的數(shù)學思想方法,考查分析思考與解決問題的能力,屬于難題.12、A【解析】
由正弦定理化簡已知等式可得,結合,可得,結合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點睛】本題主要考查了正弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)二項展開式定理,求出含的系數(shù)和含的系數(shù),相乘即可.【詳解】的展開式中,所求項為:,的系數(shù)為.
故答案為:.【點睛】本題考查二項展開式定理的應用,屬于基礎題.14、1【解析】
根據(jù)均值的定義計算.【詳解】由題意,∴.故答案為:1.【點睛】本題考查均值的概念,屬于基礎題.15、【解析】
根據(jù)圓柱的體積為,以及圓錐的體積公式,計算即得.【詳解】由題得,,得.故答案為:【點睛】本題主要考查圓錐體的體積,是基礎題.16、2【解析】
根據(jù)遞推公式可考慮分析,再累加求出關于關于參數(shù)的關系,根據(jù)表達式的取值分析出,再用數(shù)學歸納法證明滿足條件即可.【詳解】因為,累加可得.若,注意到當時,,不滿足對任意的正整數(shù)均有.所以.當時,證明:對任意的正整數(shù)都有.當時,成立.假設當時結論成立,即,則,即結論對也成立.由數(shù)學歸納法可知,對任意的正整數(shù)都有.綜上可知,所求實數(shù)的最大值是2.故答案為:2【點睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解參數(shù)最值的問題,需要根據(jù)遞推公式累加求解,同時注意結合參數(shù)的范圍問題進行分析.屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】
(1)由,周長,解得,即可求得標準方程.(2)通過特殊情況的斜率不存在時,求得,再證明的斜率存在時,即可證得為定值.通過設直線的方程為與橢圓方程聯(lián)立,借助韋達定理求得,利用直線與圓相切,即,求得的關系代入,化簡即可證得即可證得結論.【詳解】(1)由題意得,周長,且.聯(lián)立解得,,所以橢圓C的標準方程為.(2)①當直線l的斜率不存在時,不妨設其方程為,則,所以,即.②當直線l的斜率存在時,設其方程為,并設,由,,,由直線l與圓E相切,得.所以.從而,即.綜合上述,得為定值.【點睛】本題考查了橢圓的標準方程,直線與橢圓的位置關系中定值問題,考查了學生計算求解能力,難度較難.18、(1).(2)為定值.過程見解析.【解析】分析:(1)焦距說明,用點差法可得=.這樣可解得,得橢圓方程;(2)若,這種特殊情形可直接求得,在時,直線方程為,設,把直線方程代入橢圓方程,后可得,然后由紡長公式計算出弦長,同時直線方程為,代入橢圓方程可得點坐標,從而計算出,最后計算即可.詳解:(1)由題意可知,設,代入橢圓可得:,兩式相減并整理可得,,即.又因為,,代入上式可得,.又,所以,故橢圓的方程為.(2)由題意可知,,當為長軸時,為短半軸,此時;否則,可設直線的方程為,聯(lián)立,消可得,,則有:,所以設直線方程為,聯(lián)立,根據(jù)對稱性,不妨得,所以.故,綜上所述,為定值.點睛:設直線與橢圓相交于兩點,的中點為,則有,證明方法是點差法:即把點坐標代入橢圓方程得,,兩式相減,結合斜率公式可得.19、(1);(2)證明見解析.【解析】
(1)根據(jù)橢圓的基本性質(zhì)列出方程組,即可得出橢圓方程;(2)設點,,,由,,結合斜率公式化簡得出,,即,滿足,由的任意性,得出直線恒過一個定點.【詳解】(1)依題意得,解得即橢圓:;(2)設點,,其中,由,得,即,注意到,于是,因此,滿足由的任意性知,,,即直線恒過一個定點.【點睛】本題主要考查了求橢圓的方程,直線過定點問題,屬于中檔題.20、(Ⅰ);(Ⅱ)16.【解析】
(Ⅰ)設出直線的方程并代入拋物線方程,利用韋達定理以及斜率公式,變形可得;(Ⅱ)利用,,的斜率,求得的坐標,,再用基本不等式求得的最小值,從而可得三角形的面積的最小值.【詳解】解:(Ⅰ)設直線的方程為.聯(lián)立方程組,得,,故,.所以;(Ⅱ)不妨設的三個頂點中的兩個頂點在軸右側(包括軸),設,,,的斜率為,又,則,①因為,所以②由①②得,,(且)從而當且僅當時取“”號,從而,所以面積的最小值為.【點睛】本題考查了直線與拋物線的綜合,屬于中檔題.21、(1)見解析;(2)證明見解析.【解析】
當時,求函數(shù)的導數(shù),判
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年安徽體育運動職業(yè)技術學院單招綜合素質(zhì)考試備考試題含詳細答案解析
- 2026年安徽廣播影視職業(yè)技術學院單招綜合素質(zhì)筆試參考題庫含詳細答案解析
- 2026年廣西自然資源職業(yè)技術學院單招綜合素質(zhì)考試備考題庫含詳細答案解析
- 2026年寧波職業(yè)技術學院單招綜合素質(zhì)考試參考題庫含詳細答案解析
- 2026年山東現(xiàn)代學院單招綜合素質(zhì)筆試備考試題含詳細答案解析
- 2026年桂林電子科技大學單招綜合素質(zhì)考試備考試題含詳細答案解析
- 2026年泉州紡織服裝職業(yè)學院單招綜合素質(zhì)考試備考試題含詳細答案解析
- 2026年河南交通職業(yè)技術學院單招綜合素質(zhì)筆試參考題庫含詳細答案解析
- 2026年池州現(xiàn)代報業(yè)出版發(fā)行有限公司公開招聘印刷操作工1名考試備考試題及答案解析
- 2026年湖北生物科技職業(yè)學院單招綜合素質(zhì)考試備考試題含詳細答案解析
- 動環(huán)監(jiān)控系統(tǒng)FSU安裝調(diào)試操作指南
- 中醫(yī)養(yǎng)生知識課件
- 2025伊金霍洛旗九泰熱力有限責任公司招聘專業(yè)技術人員50人公筆試備考試題附答案
- 康養(yǎng)服務機器人技術突破與社會化應用模式探索
- 2026春譯林版英語八下-課文課堂筆記
- 2026年蘇州衛(wèi)生職業(yè)技術學院單招職業(yè)技能測試題庫及答案詳解1套
- 建材市場安保培訓課件
- 柴油供應合同范本
- 外科院感課件
- 2025國家核安保技術中心招聘筆試歷年??键c試題專練附帶答案詳解試卷3套
- 12158-2024防止靜電事故要求
評論
0/150
提交評論