版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖是由三個相同的小正方體組成的幾何體,則該幾何體的左視圖是()A. B. C. D.2.如圖,直線y=3x+6與x,y軸分別交于點A,B,以OB為底邊在y軸右側作等腰△OBC,將點C向左平移5個單位,使其對應點C′恰好落在直線AB上,則點C的坐標為()A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)3.若關于x的一元二次方程x2﹣2x+m=0有兩個不相等的實數根,則m的取值范圍是()A.m<﹣1 B.m<1 C.m>﹣1 D.m>14.已知關于x的不等式組﹣1<2x+b<1的解滿足0<x<2,則b滿足的條件是()A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣35.如圖,直線y=kx+b與y=mx+n分別交x軸于點A(﹣1,0),B(4,0),則函數y=(kx+b)(mx+n)中,則不等式的解集為()A.x>2 B.0<x<4C.﹣1<x<4 D.x<﹣1或x>46.已知x1,x2是關于x的方程x2+bx﹣3=0的兩根,且滿足x1+x2﹣3x1x2=5,那么b的值為()A.4B.﹣4C.3D.﹣37.在平面直角坐標系中,將點P(4,﹣3)繞原點旋轉90°得到P1,則P1的坐標為()A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)8.據統(tǒng)計,2018年全國春節(jié)運輸人數約為3000000000人,將3000000000用科學記數法表示為()A.0.3×1010B.3×109C.30×108D.300×1079.在六張卡片上分別寫有,π,1.5,5,0,六個數,從中任意抽取一張,卡片上的數為無理數的概率是()A. B. C. D.10.已知a-2b=-2,則4-2a+4b的值是()A.0 B.2 C.4 D.8二、填空題(共7小題,每小題3分,滿分21分)11.如圖,身高是1.6m的某同學直立于旗桿影子的頂端處,測得同一時刻該同學和旗桿的影子長分別為1.2m和9m.則旗桿的高度為________m.12.如圖,AD∥BE∥CF,直線l1,l2與這三條平行線分別交于點A,B,C和點D,E,F,,DE=6,則EF=.13.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連結BD、DP,BD與CF相交于點H,給出下列結論:①△DFP~△BPH;②;③PD2=PH?CD;④,其中正確的是______(寫出所有正確結論的序號).14.如圖,已知,D、E分別是邊AB、AC上的點,且設,,那么______用向量、表示15.如圖,在矩形ABCD中,AB=3,BC=5,在CD上任取一點E,連接BE,將△BCE沿BE折疊,使點C恰好落在AD邊上的點F處,則CE的長為_____.16.某商場將一款品牌時裝按標價打九折出售,可獲利80%,這款商品的標價為1000元,則進價為________元。17.規(guī)定:[x]表示不大于x的最大整數,(x)表示不小于x的最小整數,[x)表示最接近x的整數(x≠n+0.5,n為整數),例如:[1.3]=1,(1.3)=3,[1.3)=1.則下列說法正確的是________.(寫出所有正確說法的序號)①當x=1.7時,[x]+(x)+[x)=6;②當x=﹣1.1時,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解為1<x<1.5;④當﹣1<x<1時,函數y=[x]+(x)+x的圖象與正比例函數y=4x的圖象有兩個交點.三、解答題(共7小題,滿分69分)18.(10分)(1)計算:sin45°(2)解不等式組:19.(5分)知識改變世界,科技改變生活.導航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學生乘車到黑龍灘(用C表示)開展社會實踐活動,車到達A地后,發(fā)現C地恰好在A地的正北方向,且距離A地13千米,導航顯示車輛應沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達C地,求B、C兩地的距離.(參考數據:sin53°≈,cos53°≈,tan53°≈)20.(8分)如圖,將矩形OABC放在平面直角坐標系中,O為原點,點A在x軸的正半軸上,B(8,6),點D是射線AO上的一點,把△BAD沿直線BD折疊,點A的對應點為A′.(1)若點A′落在矩形的對角線OB上時,OA′的長=;(2)若點A′落在邊AB的垂直平分線上時,求點D的坐標;(3)若點A′落在邊AO的垂直平分線上時,求點D的坐標(直接寫出結果即可).21.(10分)如圖,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB圍成的圖形稱為該拋物線對應的準蝶形,線段AB稱為碟寬,頂點M稱為碟頂.(1)由定義知,取AB中點N,連結MN,MN與AB的關系是_____.(2)拋物線y=對應的準蝶形必經過B(m,m),則m=_____,對應的碟寬AB是_____.(3)拋物線y=ax2﹣4a﹣(a>0)對應的碟寬在x軸上,且AB=1.①求拋物線的解析式;②在此拋物線的對稱軸上是否有這樣的點P(xp,yp),使得∠APB為銳角,若有,請求出yp的取值范圍.若沒有,請說明理由.22.(10分)如圖,已知點A(﹣2,0),B(4,0),C(0,3),以D為頂點的拋物線y=ax2+bx+c過A,B,C三點.(1)求拋物線的解析式及頂點D的坐標;(2)設拋物線的對稱軸DE交線段BC于點E,P為第一象限內拋物線上一點,過點P作x軸的垂線,交線段BC于點F,若四邊形DEFP為平行四邊形,求點P的坐標.23.(12分)某小學為了了解學生每天完成家庭作業(yè)所用時間的情況,從每班抽取相同數量的學生進行調查,并將所得數據進行整理,制成條形統(tǒng)計圖和扇形統(tǒng)計圖如下:補全條形統(tǒng)計圖;求扇形統(tǒng)計圖扇形D的圓心角的度數;若該中學有2000名學生,請估計其中有多少名學生能在1.5小時內完成家庭作業(yè)?24.(14分)已知拋物線y=ax2﹣bx.若此拋物線與直線y=x只有一個公共點,且向右平移1個單位長度后,剛好過點(3,1).①求此拋物線的解析式;②以y軸上的點P(1,n)為中心,作該拋物線關于點P對稱的拋物線y',若這兩條拋物線有公共點,求n的取值范圍;若a>1,將此拋物線向上平移c個單位(c>1),當x=c時,y=1;當1<x<c時,y>1.試比較ac與1的大小,并說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】分析:細心觀察圖中幾何體中正方體擺放的位置,根據左視圖是從左面看到的圖形判定則可.詳解:從左邊看豎直疊放2個正方形.故選:C.點睛:此題考查了幾何體的三種視圖和學生的空間想象能力,左視圖是從物體左面看所得到的圖形,解答時學生易將三種視圖混淆而錯誤的選其它選項.2、B【解析】令x=0,y=6,∴B(0,6),∵等腰△OBC,∴點C在線段OB的垂直平分線上,∴設C(a,3),則C'(a-5,3),∴3=3(a-5)+6,解得a=4,∴C(4,3).故選B.點睛:掌握等腰三角形的性質、函數圖像的平移.3、B【解析】
根據方程有兩個不相等的實數根結合根的判別式即可得出△=4-4m>0,解之即可得出結論.【詳解】∵關于x的一元二次方程x2-2x+m=0有兩個不相等的實數根,∴△=(-2)2-4m=4-4m>0,解得:m<1.故選B.【點睛】本題考查了根的判別式,熟練掌握“當△>0時,方程有兩個不相等的兩個實數根”是解題的關鍵.4、C【解析】
根據不等式的性質得出x的解集,進而解答即可.【詳解】∵-1<2x+b<1∴,∵關于x的不等式組-1<2x+b<1的解滿足0<x<2,∴,解得:-3≤b≤-1,故選C.【點睛】此題考查解一元一次不等式組,關鍵是根據不等式的性質得出x的解集.5、C【解析】
看兩函數交點坐標之間的圖象所對應的自變量的取值即可.【詳解】∵直線y1=kx+b與直線y2=mx+n分別交x軸于點A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集為﹣1<x<4,故選C.【點睛】本題主要考查一次函數和一元一次不等式,本題是借助一次函數的圖象解一元一次不等式,兩個圖象的“交點”是兩個函數值大小關系的“分界點”,在“分界點”處函數值的大小發(fā)生了改變.6、A【解析】
根據一元二次方程根與系數的關系和整體代入思想即可得解.【詳解】∵x1,x2是關于x的方程x2+bx﹣3=0的兩根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故選A.【點睛】本題主要考查一元二次方程的根與系數的關系(韋達定理),韋達定理:若一元二次方程ax2+bx+c=0(a≠0)有兩個實數根x1,x2,那么x1+x2=-ba,x1x2=7、A【解析】
分順時針旋轉,逆時針旋轉兩種情形求解即可.【詳解】解:如圖,分兩種情形旋轉可得P′(3,4),P″(?3,?4),故選A.【點睛】本題考查坐標與圖形變換——旋轉,解題的關鍵是利用空間想象能力.8、B【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.【詳解】解:根據科學計數法的定義可得,3000000000=3×109,故選擇B.【點睛】本題考查了科學計數法的定義,確定n的值是易錯點.9、B【解析】
無限不循環(huán)小數叫無理數,無理數通常有以下三種形式:一是開方開不盡的數,二是圓周率π,三是構造的一些不循環(huán)的數,如1.010010001……(兩個1之間0的個數一次多一個).然后用無理數的個數除以所有書的個數,即可求出從中任意抽取一張,卡片上的數為無理數的概率.【詳解】∵這組數中無理數有,共2個,∴卡片上的數為無理數的概率是.故選B.【點睛】本題考查了無理數的定義及概率的計算.10、D【解析】∵a-2b=-2,∴-a+2b=2,∴-2a+4b=4,∴4-2a+4b=4+4=8,故選D.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】試題分析:利用相似三角形的相似比,列出方程,通過解方程求出旗桿的高度即可.解:∵同一時刻物高與影長成正比例.設旗桿的高是xm.∴1.6:1.2=x:9∴x=1.即旗桿的高是1米.故答案為1.考點:相似三角形的應用.12、1.【解析】試題分析:∵AD∥BE∥CF,∴,即,∴EF=1.故答案為1.考點:平行線分線段成比例.13、①②③【解析】
依據∠FDP=∠PBD,∠DFP=∠BPC=60°,即可得到△DFP∽△BPH;依據△DFP∽△BPH,可得,再根據BP=CP=CD,即可得到;判定△DPH∽△CPD,可得,即PD2=PH?CP,再根據CP=CD,即可得出PD2=PH?CD;根據三角形面積計算公式,結合圖形得到△BPD的面積=△BCP的面積+△CDP面積﹣△BCD的面積,即可得出.【詳解】∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,故①正確;∵∠DCF=90°﹣60°=30°,∴tan∠DCF=,∵△DFP∽△BPH,∴,∵BP=CP=CD,∴,故②正確;∵PC=DC,∠DCP=30°,∴∠CDP=75°,又∵∠DHP=∠DCH+∠CDH=75°,∴∠DHP=∠CDP,而∠DPH=∠CPD,∴△DPH∽△CPD,∴,即PD2=PH?CP,又∵CP=CD,∴PD2=PH?CD,故③正確;如圖,過P作PM⊥CD,PN⊥BC,設正方形ABCD的邊長是4,△BPC為正三角形,則正方形ABCD的面積為16,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB?sin60°=4×=2,PM=PC?sin30°=2,∵S△BPD=S四邊形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×4×2+×2×4﹣×4×4=4+4﹣8=4﹣4,∴,故④錯誤,故答案為:①②③.【點睛】本題考查了正方形的性質、相似三角形的判定與性質、解直角三角形等知識,正確添加輔助線、靈活運用相關的性質定理與判定定理是解題的關鍵.14、【解析】
在△ABC中,,∠A=∠A,所以△ABC△ADE,所以DE=BC,再由向量的運算可得出結果.【詳解】解:在△ABC中,,∠A=∠A,∴△ABC△ADE,∴DE=BC,∴=3=3∴=,故答案為.【點睛】本題考查了相似三角形的判定和性質以及向量的運算.15、【解析】
設CE=x,由矩形的性質得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折疊的性質得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的長度,進而求出DF的長度;然后在Rt△DEF根據勾股定理列出關于x的方程即可解決問題.【詳解】設CE=x.∵四邊形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵將△BCE沿BE折疊,使點C恰好落在AD邊上的點F處,∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中,由勾股定理得:AF2=52-32=16,∴AF=4,DF=5-4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3-x)2+12,解得:x=,故答案為.16、500【解析】
設該品牌時裝的進價為x元,根據題意列出方程,求出方程的解得到x的值,即可得到結果.【詳解】解:設該品牌時裝的進價為x元,根據題意得:1000×90%-x=80%x,解得:x=500,則該品牌時裝的進價為500元.故答案為:500.【點睛】本題考查了一元一次方程的應用,找出題中的等量關系是解本題的關鍵.17、②③【解析】試題解析:①當x=1.7時,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+1+1=5,故①錯誤;②當x=﹣1.1時,[x]+(x)+[x)=[﹣1.1]+(﹣1.1)+[﹣1.1)=(﹣3)+(﹣1)+(﹣1)=﹣7,故②正確;③當1<x<1.5時,4[x]+3(x)+[x)=4×1+3×1+1=4+6+1=11,故③正確;④∵﹣1<x<1時,∴當﹣1<x<﹣0.5時,y=[x]+(x)+x=﹣1+0+x=x﹣1,當﹣0.5<x<0時,y=[x]+(x)+x=﹣1+0+x=x﹣1,當x=0時,y=[x]+(x)+x=0+0+0=0,當0<x<0.5時,y=[x]+(x)+x=0+1+x=x+1,當0.5<x<1時,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,則x﹣1=4x時,得x=;x+1=4x時,得x=;當x=0時,y=4x=0,∴當﹣1<x<1時,函數y=[x]+(x)+x的圖象與正比例函數y=4x的圖象有三個交點,故④錯誤,故答案為②③.考點:1.兩條直線相交或平行問題;1.有理數大小比較;3.解一元一次不等式組.三、解答題(共7小題,滿分69分)18、(1);(2)﹣2<x≤1.【解析】
(1)根據絕對值、特殊角的三角函數值可以解答本題;(2)根據解一元一次不等式組的方法可以解答本題.【詳解】(1)sin45°=3-+×-5+×=3-+3-5+1=7--5;(2)(2)由不等式①,得x>-2,由不等式②,得x≤1,故原不等式組的解集是-2<x≤1.【點睛】本題考查解一元一次不等式組、實數的運算、特殊角的三角函數值,解答本題的關鍵是明確解它們各自的解答方法.19、(20-5)千米.【解析】分析:作BD⊥AC,設AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立關于x的方程,解之求得x的值,最后由BC=可得答案.詳解:過點B作BD⊥AC,依題可得:∠BAD=60°,∠CBE=37°,AC=13(千米),∵BD⊥AC,∴∠ABD=30°,∠CBD=53°,在Rt△ABD中,設AD=x,∴tan∠ABD=即tan30°=,∴BD=x,在Rt△DCB中,∴tan∠CBD=即tan53°=,∴CD=∵CD+AD=AC,∴x+=13,解得,x=∴BD=12-,在Rt△BDC中,∴cos∠CBD=tan60°=,即:BC=(千米),故B、C兩地的距離為(20-5)千米.點睛:此題考查了方向角問題.此題難度適中,解此題的關鍵是將方向角問題轉化為解直角三角形的知識,利用三角函數的知識求解.20、(1)1;(2)點D(8﹣23,0);(3)點D的坐標為(35﹣1,0)或(﹣35﹣1,0).【解析】分析:(Ⅰ)由點B的坐標知OA=8、AB=1、OB=10,根據折疊性質可得BA=BA′=1,據此可得答案;(Ⅱ)連接AA′,利用折疊的性質和中垂線的性質證△BAA′是等邊三角形,可得∠A′BD=∠ABD=30°,據此知AD=ABtan∠ABD=23,繼而可得答案;(Ⅲ)分點D在OA上和點D在AO延長線上這兩種情況,利用相似三角形的判定和性質分別求解可得.詳解:(Ⅰ)如圖1,由題意知OA=8、AB=1,∴OB=10,由折疊知,BA=BA′=1,∴OA′=1.故答案為1;(Ⅱ)如圖2,連接AA′.∵點A′落在線段AB的中垂線上,∴BA=AA′.∵△BDA′是由△BDA折疊得到的,∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,∴AB=A′B=AA′,∴△BAA′是等邊三角形,∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,∴AD=ABtan∠ABD=1tan30°=23,∴OD=OA﹣AD=8﹣23,∴點D(8﹣23,0);(Ⅲ)①如圖3,當點D在OA上時.由旋轉知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點A′在線段OA的中垂線上,∴BM=AN=12OA=4,∴A′M=A'B2-B∴A′N=MN﹣A′M=AB﹣A′M=1﹣25,由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,則A'MDN=BMA'解得:DN=35﹣5,則OD=ON+DN=4+35﹣5=35﹣1,∴D(35﹣1,0);②如圖4,當點D在AO延長線上時,過點A′作x軸的平行線交y軸于點M,延長AB交所作直線于點N,則BN=CM,MN=BC=OA=8,由旋轉知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.∵點A′在線段OA的中垂線上,∴A′M=A′N=12MN則MC=BN=A'B2-A'N2=25,∴MO由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,則MEA'N=MA'NB解得:ME=855,則OE=MO﹣ME=1+∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,∴△DOE∽△A′ME,∴DOA'M=OEME,即解得:DO=33+1,則點D的坐標為(﹣35﹣1,0).綜上,點D的坐標為(35﹣1,0)或(﹣35﹣1,0).點睛:本題主要考查四邊形的綜合問題,解題的關鍵是熟練掌握折疊變換的性質、矩形的性質、相似三角形的判定與性質及勾股定理等知識點.21、(1)MN與AB的關系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此拋物線的對稱軸上有這樣的點P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【解析】
(1)直接利用等腰直角三角形的性質分析得出答案;(2)利用已知點為B(m,m),代入拋物線解析式進而得出m的值,即可得出AB的值;(2)①根據題意得出拋物線必過(2,0),進而代入求出答案;②根據y=x2﹣2的對稱軸上P(0,2),P(0,﹣2)時,∠APB為直角,進而得出答案.【詳解】(1)MN與AB的關系是:MN⊥AB,MN=AB,如圖1,∵△AMB是等腰直角三角形,且N為AB的中點,∴MN⊥AB,MN=AB,故答案為MN⊥AB,MN=AB;(2)∵拋物線y=對應的準蝶形必經過B(m,m),∴m=m2,解得:m=2或m=0(不合題意舍去),當m=2則,2=x2,解得:x=±2,則AB=2+2=4;故答案為2,4;(2)①由已知,拋物線對稱軸為:y軸,∵拋物線y=ax2﹣4a﹣(a>0)對應的碟寬在x軸上,且AB=1.∴拋物線必過(2,0),代入y=ax2﹣4a﹣(a>0),得,9a﹣4a﹣=0,解得:a=,∴拋物線的解析式是:y=x2﹣2;②由①知,如圖2,y=x2﹣2的對稱軸上P(0,2),P(0,﹣2)時,∠APB為直角,∴在此拋物線的對稱軸上有這樣的點P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【點睛】此題主要考查了二次函數綜合以及等腰直角三角形的性質,正確應用等腰直角三角形的性質是解題關鍵.22、(1)y=﹣38x2+34x+3;D(1,278【解析】
(1)設拋物線的解析式為y=a(x+2)(x-4),將點C(0,3)代入可求得a的值,將a的值代入可求得拋物線的解析式,配方可得頂點D的坐標;(2)畫圖,先根據點B和C的坐標確定直線BC的解析式,設P(m,-38m2+34m+3),則F(m,-【詳解】解:(1)設拋物線的解析式為y=a(x+2)(x﹣4),將點C(0,3)代入得:﹣8a=3,解得:a=﹣38y=﹣38x2+34x+3=﹣38(x﹣1)2∴拋物線的解析式為y=﹣38x2+34x+3,且頂點D(1,(2)∵B(4,0),C(0,3),∴BC的解析式為:y=﹣34∵D(1,278當x=1時,y=﹣34+3=9∴E(1,94∴DE=278-94=9設P(m,﹣38m2+34m+3),則F(m,﹣∵四邊形DEFP是平行四
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GBT 35430-2017 信息與文獻 期刊描述型元數據元素集》專題研究報告
- 《GB-T 41678.1-2022農業(yè)機械和拖拉機 高壓電氣電子元件和系統(tǒng)的安全性 第1部分:通 用要求》專題研究報告
- 《GB-T 28030-2011接地導通電阻測試儀》專題研究報告
- 《GBT 33756-2017 基于項目的溫室氣體減排量評估技術規(guī)范 生產水泥熟料的原料替代項目》專題研究報告
- 養(yǎng)老社區(qū)床位預定金擔保協(xié)議
- 智能農業(yè)設備運維員崗位招聘考試試卷及答案
- 2026年內二科護理工作計劃
- 2025年白喉、百日咳、破傷風、乙肝四聯制劑合作協(xié)議書
- 2025年平板型太陽熱水器項目建議書
- 兒童睡眠障礙的行為矯正方法
- 紡織業(yè)賬務知識培訓課件
- 1688采購合同范本
- 購買鐵精粉居間合同范本
- GB/T 29730-2025冷熱水用分集水器
- 污水廠安全知識培訓
- (2025年標準)存單轉讓協(xié)議書
- 醫(yī)學科研誠信專項培訓
- 電力通信培訓課件
- 第五版FMEA控制程序文件編制
- 藥物致癌性試驗必要性指導原則
- 軟骨肉瘤護理查房
評論
0/150
提交評論