版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,△ABC中,∠B=55°,∠C=30°,分別以點A和點C為圓心,大于AC的長為半徑畫弧,兩弧相交于點M,N作直線MN,交BC于點D,連結AD,則∠BAD的度數(shù)為()A.65° B.60°C.55° D.45°2.下列運算正確的是()A.(a2)3=a5 B.(a-b)2=a2-b2 C.3=3 D.=-33.某射擊運動員練習射擊,5次成績分別是:8、9、7、8、x(單位:環(huán)).下列說法中正確的是()A.若這5次成績的中位數(shù)為8,則x=8B.若這5次成績的眾數(shù)是8,則x=8C.若這5次成績的方差為8,則x=8D.若這5次成績的平均成績是8,則x=84.如圖是一個由4個相同的正方體組成的立體圖形,它的左視圖為()A. B. C. D.5.|–|的倒數(shù)是()A.–2 B.– C. D.26.如果一組數(shù)據(jù)6、7、x、9、5的平均數(shù)是2x,那么這組數(shù)據(jù)的方差為()A.4 B.3 C.2 D.17.如圖是由若干個大小相同的小正方體堆砌而成的幾何體,那么其三種視圖中面積最小的是()A.主視圖 B.俯視圖 C.左視圖 D.一樣大8.如圖1,點E為矩形ABCD的邊AD上一點,點P從點B出發(fā)沿BE→ED→DC運動到點C停止,點Q從點B出發(fā)沿BC運動到點C停止,它們運動的速度都是1cm/s.若點P、Q同時開始運動,設運動時間為t(s),△BPQ的面積為y(cm2),已知y與t之間的函數(shù)圖象如圖2所示.給出下列結論:①當0<t≤10時,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22時,y=110﹣1t;④在運動過程中,使得△ABP是等腰三角形的P點一共有3個;⑤當△BPQ與△BEA相似時,t=14.1.其中正確結論的序號是()A.①④⑤ B.①②④ C.①③④ D.①③⑤9.關于的不等式的解集如圖所示,則的取值是A.0 B. C. D.10.如圖,將函數(shù)的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(-4,m),B(-1,n),平移后的對應點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達式是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.某商場對今年端午節(jié)這天銷售A、B、C三種品牌粽子的情況進行了統(tǒng)計,繪制了如圖1和圖2所示的統(tǒng)計圖,則B品牌粽子在圖2中所對應的扇形的心角的度數(shù)是_____.12.如圖,在△ABC中,點E,F(xiàn)分別是AC,BC的中點,若S四邊形ABFE=9,則S三角形EFC=________.13.如圖,用黑白兩種顏色的紙片,按黑色紙片數(shù)逐漸增加1的規(guī)律拼成如圖圖案,則第4個圖案中有__________白色紙片,第n個圖案中有__________張白色紙片.14.如圖,某數(shù)學興趣小組為了測量河對岸l1的兩棵古樹A、B之間的距離,他們在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為_____m.15.已知點A(2,4)與點B(b﹣1,2a)關于原點對稱,則ab=_____.16.中國古代的數(shù)學專著《九章算術》有方程組問題“五只雀,六只燕,共重1斤(等于16兩),雀重燕輕.互換其中一只,恰好一樣重.”設每只雀、燕的重量各為x兩,y兩,則根據(jù)題意,可得方程組為___.17.若點與點關于原點對稱,則______.三、解答題(共7小題,滿分69分)18.(10分)已知:如圖,點A,F(xiàn),C,D在同一直線上,AF=DC,AB∥DE,AB=DE,連接BC,BF,CE.求證:四邊形BCEF是平行四邊形.19.(5分)如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點,點P在線段AD上,過P作PF⊥AE于F,設PA=x.(1)求證:△PFA∽△ABE;(2)當點P在線段AD上運動時,設PA=x,是否存在實數(shù)x,使得以點P,F(xiàn),E為頂點的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;(3)探究:當以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點時,請直接寫出x滿足的條件:.20.(8分)如圖1,點P是平面直角坐標系中第二象限內的一點,過點P作PA⊥y軸于點A,點P繞點A順時針旋轉60°得到點P',我們稱點P'是點P的“旋轉對應點”.(1)若點P(﹣4,2),則點P的“旋轉對應點”P'的坐標為;若點P的“旋轉對應點”P'的坐標為(﹣5,16)則點P的坐標為;若點P(a,b),則點P的“旋轉對應點”P'的坐標為;(2)如圖2,點Q是線段AP'上的一點(不與A、P'重合),點Q的“旋轉對應點”是點Q',連接PP'、QQ',求證:PP'∥QQ';(3)點P與它的“旋轉對應點”P'的連線所在的直線經(jīng)過點(,6),求直線PP'與x軸的交點坐標.21.(10分)計算:÷+8×2﹣1﹣(+1)0+2?sin60°.22.(10分)如圖,二次函數(shù)的圖像與軸交于、兩點,與軸交于點,.點在函數(shù)圖像上,軸,且,直線是拋物線的對稱軸,是拋物線的頂點.求、的值;如圖①,連接,線段上的點關于直線的對稱點恰好在線段上,求點的坐標;如圖②,動點在線段上,過點作軸的垂線分別與交于點,與拋物線交于點.試問:拋物線上是否存在點,使得與的面積相等,且線段的長度最?。咳绻嬖?,求出點的坐標;如果不存在,說明理由.23.(12分)在眉山市櫻花節(jié)期間,岷江二橋一端的空地上有一塊矩形的標語牌ABCD(如圖).已知標語牌的高AB=5m,在地面的點E處,測得標語牌點A的仰角為30°,在地面的點F處,測得標語牌點A的仰角為75°,且點E,F(xiàn),B,C在同一直線上,求點E與點F之間的距離.(計算結果精確到0.1m,參考數(shù)據(jù):≈1.41,≈1.73)24.(14分)在銳角△ABC中,邊BC長為18,高AD長為12如圖,矩形EFCH的邊GH在BC邊上,其余兩個頂點E、F分別在AB、AC邊上,EF交AD于點K,求的值;設EH=x,矩形EFGH的面積為S,求S與x的函數(shù)關系式,并求S的最大值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
根據(jù)線段垂直平分線的性質得到AD=DC,根據(jù)等腰三角形的性質得到∠C=∠DAC,求得∠DAC=30°,根據(jù)三角形的內角和得到∠BAC=95°,即可得到結論.【詳解】由題意可得:MN是AC的垂直平分線,則AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故選A.【點睛】此題主要考查了線段垂直平分線的性質,三角形的內角和,正確掌握線段垂直平分線的性質是解題關鍵.2、D【解析】試題分析:A、原式=a6,錯誤;B、原式=a2﹣2ab+b2,錯誤;C、原式不能合并,錯誤;D、原式=﹣3,正確,故選D考點:完全平方公式;合并同類項;同底數(shù)冪的乘法;平方差公式.3、D【解析】
根據(jù)中位數(shù)的定義判斷A;根據(jù)眾數(shù)的定義判斷B;根據(jù)方差的定義判斷C;根據(jù)平均數(shù)的定義判斷D.【詳解】A、若這5次成績的中位數(shù)為8,則x為任意實數(shù),故本選項錯誤;B、若這5次成績的眾數(shù)是8,則x為不是7與9的任意實數(shù),故本選項錯誤;C、如果x=8,則平均數(shù)為(8+9+7+8+8)=8,方差為[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本選項錯誤;D、若這5次成績的平均成績是8,則(8+9+7+8+x)=8,解得x=8,故本選項正確;
故選D.【點睛】本題考查中位數(shù)、眾數(shù)、平均數(shù)和方差:一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差,它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.4、B【解析】
根據(jù)左視圖的定義,從左側會發(fā)現(xiàn)兩個正方形摞在一起.【詳解】從左邊看上下各一個小正方形,如圖故選B.5、D【解析】
根據(jù)絕對值的性質,可化簡絕對值,根據(jù)倒數(shù)的意義,可得答案.【詳解】|?|=,的倒數(shù)是2;∴|?|的倒數(shù)是2,故選D.【點睛】本題考查了實數(shù)的性質,分子分母交換位置是求一個數(shù)倒數(shù)的關鍵.6、A【解析】分析:先根據(jù)平均數(shù)的定義確定出x的值,再根據(jù)方差公式進行計算即可求出答案.詳解:根據(jù)題意,得:=2x解得:x=3,則這組數(shù)據(jù)為6、7、3、9、5,其平均數(shù)是6,所以這組數(shù)據(jù)的方差為[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故選A.點睛:此題考查了平均數(shù)和方差的定義.平均數(shù)是所有數(shù)據(jù)的和除以數(shù)據(jù)的個數(shù).方差是一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù).7、C【解析】如圖,該幾何體主視圖是由5個小正方形組成,左視圖是由3個小正方形組成,俯視圖是由5個小正方形組成,故三種視圖面積最小的是左視圖,故選C.8、D【解析】
根據(jù)題意,得到P、Q分別同時到達D、C可判斷①②,分段討論PQ位置后可以判斷③,再由等腰三角形的分類討論方法確定④,根據(jù)兩個點的相對位置判斷點P在DC上時,存在△BPQ與△BEA相似的可能性,分類討論計算即可.【詳解】解:由圖象可知,點Q到達C時,點P到E則BE=BC=10,ED=4故①正確則AE=10﹣4=6t=10時,△BPQ的面積等于∴AB=DC=8故故②錯誤當14<t<22時,故③正確;分別以A、B為圓心,AB為半徑畫圓,將兩圓交點連接即為AB垂直平分線則⊙A、⊙B及AB垂直平分線與點P運行路徑的交點是P,滿足△ABP是等腰三角形此時,滿足條件的點有4個,故④錯誤.∵△BEA為直角三角形∴只有點P在DC邊上時,有△BPQ與△BEA相似由已知,PQ=22﹣t∴當或時,△BPQ與△BEA相似分別將數(shù)值代入或,解得t=(舍去)或t=14.1故⑤正確故選:D.【點睛】本題是動點問題的函數(shù)圖象探究題,考查了三角形相似判定、等腰三角形判定,應用了分類討論和數(shù)形結合的數(shù)學思想.9、D【解析】
首先根據(jù)不等式的性質,解出x≤,由數(shù)軸可知,x≤-1,所以=-1,解出即可;【詳解】解:不等式,解得x<,由數(shù)軸可知,所以,解得;故選:.【點睛】本題主要考查了不等式的解法和在數(shù)軸上表示不等式的解集,在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.10、D【解析】分析:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),AC=-1-(-1)=3,根據(jù)平移的性質以及曲線段AB掃過的面積為9(圖中的陰影部分),得出AA′=3,然后根據(jù)平移規(guī)律即可求解.詳解:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),∴AC=-1-(-1)=3,∵曲線段AB掃過的面積為9(圖中的陰影部分),∴矩形ACDA′的面積等于9,∴AC·AA′=3AA′=9,∴AA′=3,∴新函數(shù)的圖是將函數(shù)y=(x-2)2+1的圖象沿y軸向上平移3個單位長度得到的,∴新圖象的函數(shù)表達式是y=(x-2)2+1+3=(x-2)2+1.故選D.點睛:此題主要考查了二次函數(shù)圖象變換以及矩形的面積求法等知識,根據(jù)已知得出AA′的長度是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、120°【解析】
根據(jù)圖1中C品牌粽子1200個,在圖2中占50%,求出三種品牌粽子的總個數(shù),再求出B品牌粽子的個數(shù),從而計算出B品牌粽子占粽子總數(shù)的比例,從而求出B品牌粽子在圖2中所對應的圓心角的度數(shù).【詳解】解:∵三種品牌的粽子總數(shù)為1200÷50%=2400個,又∵A、C品牌的粽子分別有400個、1200個,∴B品牌的粽子有2400-400-1200=800個,則B品牌粽子在圖2中所對應的圓心角的度數(shù)為360×.故答案為120°.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?2、3【解析】分析:由已知條件易得:EF∥AB,且EF:AB=1:2,從而可得△CEF∽△CAB,且相似比為1:2,設S△CEF=x,根據(jù)相似三角形的性質可得方程:,解此方程即可求得△EFC的面積.詳解:∵在△ABC中,點E,F(xiàn)分別是AC,BC的中點,∴EF是△ABC的中位線,∴EF∥AB,EF:AB=1:2,∴△CEF∽△CAB,∴S△CEF:S△CAB=1:4,設S△CEF=x,∵S△CAB=S△CEF+S四邊形ABFE,S四邊形ABFE=9,∴,解得:,經(jīng)檢驗:是所列方程的解.故答案為:3.點睛:熟悉三角形的中位線定理和相似三角形的面積比等于相似比的平方是正確解答本題的關鍵.13、133n+1【解析】分析:觀察圖形發(fā)現(xiàn):白色紙片在4的基礎上,依次多3個;根據(jù)其中的規(guī)律得出第n個圖案中有白色紙片即可.詳解:∵第1個圖案中有白色紙片3×1+1=4張第2個圖案中有白色紙片3×2+1=7張,第3圖案中有白色紙片3×3+1=10張,∴第4個圖案中有白色紙片3×4+1=13張第n個圖案中有白色紙片3n+1張,故答案為:13、3n+1.點睛:考查學生的探究能力,解題時必須仔細觀察規(guī)律,通過歸納得出結論.14、(50﹣).【解析】
過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得MN=AB.【詳解】解:如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N,則AB=MN,AM=BN.在直角△ACM,∵∠ACM=45°,AM=50m,∴CM=AM=50m.∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN===(m),∴MN=CM?CN=50?(m).則AB=MN=(50?)m.故答案是:(50?).【點睛】本題考查了解直角三角形的應用.解決此問題的關鍵在于正確理解題意的基礎上建立數(shù)學模型,把實際問題轉化為數(shù)學問題.15、1.【解析】由題意,得b?1=?1,1a=?4,解得b=?1,a=?1,∴ab=(?1)×(?1)=1,故答案為1.16、【解析】設每只雀、燕的重量各為x兩,y兩,由題意得:故答案是:或.17、1【解析】∵點P(m,﹣2)與點Q(3,n)關于原點對稱,∴m=﹣3,n=2,則(m+n)2018=(﹣3+2)2018=1,故答案為1.三、解答題(共7小題,滿分69分)18、證明見解析【解析】
首先證明△ABC≌△DEF(ASA),進而得出BC=EF,BC∥EF,進而得出答案.【詳解】∵AB∥DE,∴∠A=∠D,∵AF=CD,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四邊形BCEF是平行四邊形.【點睛】本題考查了全等三角形的判定與性質與平行四邊形的判定,解題的關鍵是熟練的掌握全等三角形的判定與性質與平行四邊形的判定.19、(1)證明見解析;(2)3或.(3)或0<【解析】
(1)根據(jù)矩形的性質,結合已知條件可以證明兩個角對應相等,從而證明三角形相似;
(2)由于對應關系不確定,所以應針對不同的對應關系分情況考慮:當時,則得到四邊形為矩形,從而求得的值;當時,再結合(1)中的結論,得到等腰.再根據(jù)等腰三角形的三線合一得到是的中點,運用勾股定理和相似三角形的性質進行求解.
(3)此題首先應針對點的位置分為兩種大情況:①與AE相切,②與線段只有一個公共點,不一定必須相切,只要保證和線段只有一個公共點即可.故求得相切時的情況和相交,但其中一個交點在線段外的情況即是的取值范圍.【詳解】(1)證明:∵矩形ABCD,∴AD∥BC.∴∠PAF=∠AEB.又∵PF⊥AE,∴△PFA∽△ABE.(2)情況1,當△EFP∽△ABE,且∠PEF=∠EAB時,則有PE∥AB∴四邊形ABEP為矩形,∴PA=EB=3,即x=3.情況2,當△PFE∽△ABE,且∠PEF=∠AEB時,∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴點F為AE的中點,即∴滿足條件的x的值為3或(3)或【點睛】兩組角對應相等,兩三角形相似.20、(1)(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)見解析;(3)直線PP'與x軸的交點坐標(﹣,0)【解析】
(1)①當P(-4,2)時,OA=2,PA=4,由旋轉知,∠P'AH=30°,進而P'H=P'A=2,AH=P'H=2,即可得出結論;②當P'(-5,16)時,確定出P'A=10,AH=5,由旋轉知,PA=PA'=10,OA=OH-AH=16-5,即可得出結論;③當P(a,b)時,同①的方法得,即可得出結論;(2)先判斷出∠BQQ'=60°,進而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出結論;(3)先確定出yPP'=x+3,即可得出結論.【詳解】解:(1)如圖1,①當P(﹣4,2)時,∵PA⊥y軸,∴∠PAH=90°,OA=2,PA=4,由旋轉知,P'A=4,∠PAP'=60°,∴∠P'AH=30°,在Rt△P'AH中,P'H=P'A=2,∴AH=P'H=2,∴OH=OA+AH=2+2,∴P'(﹣2,2+2),②當P'(﹣5,16)時,在Rt△P'AH中,∠P'AH=30°,P'H=5,∴P'A=10,AH=5,由旋轉知,PA=PA'=10,OA=OH﹣AH=16﹣5,∴P(﹣10,16﹣5),③當P(a,b)時,同①的方法得,P'(,b﹣a),故答案為:(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)如圖2,過點Q作QB⊥y軸于B,∴∠BQQ'=60°,由題意知,△PAP'是等邊三角形,∴∠PAP'=∠PP'A=60°,∵QB⊥y軸,PA⊥y軸,∴QB∥PA,∴∠P'QQ'=∠PAP'=60°,∴∠P'QQ'=60°=∠PP'A,∴PP'∥QQ';(3)設yPP'=kx+b',由題意知,k=,∵直線經(jīng)過點(,6),∴b'=3,∴yPP'=x+3,令y=0,∴x=﹣,∴直線PP'與x軸的交點坐標(﹣,0).【點睛】此題是幾何變換綜合題,主要考查了含30度角的直角三角形的性質,旋轉的性質,等邊三角形的判定和性質,待定系數(shù)法,解本題的關鍵是理解新定義.21、6+.【解析】
利用負整數(shù)指數(shù)冪、零指數(shù)冪的意義和特殊角的三角函數(shù)值進行計算.【詳解】解:原式=+8×﹣1+2×=3+4﹣1+=6+.【點睛】本題考查了二次根式的混合運算:先把各二次根式化簡為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當?shù)慕忸}途徑,往往能事半功倍.22、(1),;(2)點的坐標為;(3)點的坐標為和【解析】
(1)根據(jù)二次函數(shù)的對稱軸公式,拋物線上的點代入,即可;(2)先求F的對稱點,代入直線BE,即可;(3)構造新的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 陜西歷史中考試題及答案
- 攝影考試大題模板及答案
- 衛(wèi)生院三基考試題庫及答案
- 按摩館入股協(xié)議書
- 2026年新高考語文備考之現(xiàn)代文閱讀Ⅰ(論述文)訓練題型H:3、4、5題的變化
- 2026年高校教師資格證之高等教育法規(guī)考試題庫【有一套】
- 2025年智能手環(huán)健康數(shù)據(jù)與5G技術結合行業(yè)報告
- 初中歷史課堂中生成式人工智能對學生學習風格適配的實踐與反思教學研究課題報告
- 2026年材料員考試備考題庫及完整答案(典優(yōu))
- 高中政治教學中辯論教學的實踐效果分析教學研究課題報告
- 2025中遠海運集團招聘筆試歷年參考題庫附帶答案詳解
- 2025年國家統(tǒng)計局齊齊哈爾調查隊公開招聘公益性崗位5人筆試考試備考試題及答案解析
- 2025重慶市涪陵區(qū)人民政府江東街道辦事處選聘本土人才5人(公共基礎知識)測試題附答案解析
- 2025智慧物流系統(tǒng)市場發(fā)展趨勢技術創(chuàng)新市場競爭態(tài)勢與商業(yè)模式演進深度研究報告
- GB/T 46476-2025電工鋼帶和鋼片幾何特性的測量方法
- 2025年網(wǎng)絡運維工程師專業(yè)技術考試試題及答案
- (2026)急危重癥患者的早期識別與評估課件
- 婦產(chǎn)科安全管理制度
- 車間保溫防靜電施工方案
- 黨的二十屆四中全會精神測試題
- 酒吧代駕合作合同范本
評論
0/150
提交評論