版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.小明早上從家騎自行車去上學,先走平路到達點A,再走上坡路到達點B,最后走下坡路到達學校,小明騎自行車所走的路程s(單位:千米)與他所用的時間t(單位:分鐘)的關系如圖所示,放學后,小明沿原路返回,且走平路、上坡路、下坡路的速度分別保持和去上學時一致,下列說法:①小明家距學校4千米;②小明上學所用的時間為12分鐘;③小明上坡的速度是0.5千米/分鐘;④小明放學回家所用時間為15分鐘.其中正確的個數(shù)是()A.1個 B.2個 C.3個 D.4個2.如圖是二次函數(shù)的圖象,有下面四個結論:;;;,其中正確的結論是
A. B. C. D.3.點A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數(shù)y=的圖象上,若x1<x2<0<x3,則y1,y2,y3的大小關系是()A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y34.已知二次函數(shù)(為常數(shù)),當自變量的值滿足時,與其對應的函數(shù)值的最大值為-1,則的值為()A.3或6 B.1或6 C.1或3 D.4或65.已知M,N,P,Q四點的位置如圖所示,下列結論中,正確的是()A.∠NOQ=42° B.∠NOP=132°C.∠PON比∠MOQ大 D.∠MOQ與∠MOP互補6.如圖,⊙O是△ABC的外接圓,∠B=60°,⊙O的半徑為4,則AC的長等于()A.4 B.6 C.2 D.87.下列計算正確的是(
).A.(x+y)2=x2+y2 B.(-xy2)3=-x3y6C.x6÷x3=x2 D.=28.有理數(shù)a、b在數(shù)軸上的位置如圖所示,則下列結論中正確的是()A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>09.下列敘述,錯誤的是()A.對角線互相垂直且相等的平行四邊形是正方形B.對角線互相垂直平分的四邊形是菱形C.對角線互相平分的四邊形是平行四邊形D.對角線相等的四邊形是矩形10.已知兩組數(shù)據,2、3、4和3、4、5,那么下列說法正確的是()A.中位數(shù)不相等,方差不相等B.平均數(shù)相等,方差不相等C.中位數(shù)不相等,平均數(shù)相等D.平均數(shù)不相等,方差相等二、填空題(本大題共6個小題,每小題3分,共18分)11.如果a2﹣b2=8,且a+b=4,那么a﹣b的值是__.12.如圖,△ABC是直角三角形,∠C=90°,四邊形ABDE是菱形且C、B、D共線,AD、BE交于點O,連接OC,若BC=3,AC=4,則tan∠OCB=_____13.如果不等式組的解集是x<2,那么m的取值范圍是_____14.若一個三角形兩邊的垂直平分線的交點在第三邊上,則這個三角形是_____三角形.15.如圖,A、B是反比例函數(shù)y=(k>0)圖象上的點,A、B兩點的橫坐標分別是a、2a,線段AB的延長線交x軸于點C,若S△AOC=1.則k=_______.16.有一枚質地均勻的骰子,六個面分別表有1到6的點數(shù),任意將它拋擲兩次,并將兩次朝上面的點數(shù)相加,則其和小于6的概率是______.三、解答題(共8題,共72分)17.(8分)如圖,PB與⊙O相切于點B,過點B作OP的垂線BA,垂足為C,交⊙O于點A,連結PA,AO,AO的延長線交⊙O于點E,與PB的延長線交于點D.(1)求證:PA是⊙O的切線;(2)若tan∠BAD=,且OC=4,求BD的長.18.(8分)如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點D′未到達點B時,A′C′交CD于E,D′C′交CB于點F,連接EF,當四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.19.(8分)先化簡,再求值:(m+2﹣)?,其中m=﹣.20.(8分)體育老師為了解本校九年級女生1分鐘“仰臥起坐”體育測試項目的達標情況,從該校九年級136名女生中,隨機抽取了20名女生,進行了1分鐘仰臥起坐測試,獲得數(shù)據如下:收集數(shù)據:抽取20名女生的1分鐘仰臥起坐測試成績(個)如下:3846425255435946253835455148574947535849(1)整理、描述數(shù)據:請你按如下分組整理、描述樣本數(shù)據,把下列表格補充完整:范圍25≤x≤2930≤x≤3435≤x≤3940≤x≤4445≤x≤4950≤x≤5455≤x≤59人數(shù)(說明:每分鐘仰臥起坐個數(shù)達到49個及以上時在中考體育測試中可以得到滿分)(2)分析數(shù)據:樣本數(shù)據的平均數(shù)、中位數(shù)、滿分率如下表所示:平均數(shù)中位數(shù)滿分率46.847.545%得出結論:①估計該校九年級女生在中考體育測試中1分鐘“仰臥起坐”項目可以得到滿分的人數(shù)為;②該中心所在區(qū)縣的九年級女生的1分鐘“仰臥起坐”總體測試成績如下:平均數(shù)中位數(shù)滿分率45.34951.2%請你結合該校樣本測試成績和該區(qū)縣總體測試成績,為該校九年級女生的1分鐘“仰臥起坐”達標情況做一下評估,并提出相應建議.21.(8分)如圖所示,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,EC的延長線交BD于點P.(1)把△ABC繞點A旋轉到圖1,BD,CE的關系是(選填“相等”或“不相等”);簡要說明理由;(2)若AB=3,AD=5,把△ABC繞點A旋轉,當∠EAC=90°時,在圖2中作出旋轉后的圖形,PD=,簡要說明計算過程;(3)在(2)的條件下寫出旋轉過程中線段PD的最小值為,最大值為.22.(10分)如圖,AB是⊙O的直徑,點C在⊙O上,CE^AB于E,CD平分DECB,交過點B的射線于D,交AB于F,且BC=BD.(1)求證:BD是⊙O的切線;(2)若AE=9,CE=12,求BF的長.23.(12分)如圖,拋物線y=﹣x2+bx+c(a≠0)與x軸交于點A(﹣1,0)和B(3,0),與y軸交于點C,點D的橫坐標為m(0<m<3),連結DC并延長至E,使得CE=CD,連結BE,BC.(1)求拋物線的解析式;(2)用含m的代數(shù)式表示點E的坐標,并求出點E縱坐標的范圍;(3)求△BCE的面積最大值.24.對于平面直角坐標系中的點,將它的縱坐標與橫坐標的比稱為點的“理想值”,記作.如的“理想值”.(1)①若點在直線上,則點的“理想值”等于_______;②如圖,,的半徑為1.若點在上,則點的“理想值”的取值范圍是_______.(2)點在直線上,的半徑為1,點在上運動時都有,求點的橫坐標的取值范圍;(3),是以為半徑的上任意一點,當時,畫出滿足條件的最大圓,并直接寫出相應的半徑的值.(要求畫圖位置準確,但不必尺規(guī)作圖)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
從開始到A是平路,是1千米,用了3分鐘,則從學校到家門口走平路仍用3分鐘,根據圖象求得上坡(AB段)、下坡(B到學校段)的路程與速度,利用路程除以速度求得每段所用的時間,相加即可求解.【詳解】解:①小明家距學校4千米,正確;②小明上學所用的時間為12分鐘,正確;③小明上坡的速度是千米/分鐘,錯誤;④小明放學回家所用時間為3+2+10=15分鐘,正確;故選:C.【點睛】本題考查利用函數(shù)的圖象解決實際問題,正確理解函數(shù)圖象橫縱坐標表示的意義,理解問題的過程,就能夠通過圖象得到函數(shù)問題的相應解決.需注意計算單位的統(tǒng)一.2、D【解析】
根據拋物線開口方向得到,根據對稱軸得到,根據拋物線與軸的交點在軸下方得到,所以;時,由圖像可知此時,所以;由對稱軸,可得;當時,由圖像可知此時,即,將代入可得.【詳解】①根據拋物線開口方向得到,根據對稱軸得到,根據拋物線與軸的交點在軸下方得到,所以,故①正確.②時,由圖像可知此時,即,故②正確.③由對稱軸,可得,所以錯誤,故③錯誤;④當時,由圖像可知此時,即,將③中變形為,代入可得,故④正確.故答案選D.【點睛】本題考查了二次函數(shù)的圖像與系數(shù)的關系,注意用數(shù)形結合的思想解決問題。3、D【解析】
先根據反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限,再根據x1<x2<0<x1,判斷出三點所在的象限,再根據函數(shù)的增減性即可得出結論.【詳解】∵反比例函數(shù)y=中,k=1>0,∴此函數(shù)圖象的兩個分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,點C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y隨x的增大而減小,∴y1>y2,∴y2<y1<y1.故選D.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,先根據題意判斷出函數(shù)圖象所在的象限及三點所在的象限是解答此題的關鍵.4、B【解析】分析:分h<2、2≤h≤5和h>5三種情況考慮:當h<2時,根據二次函數(shù)的性質可得出關于h的一元二次方程,解之即可得出結論;當2≤h≤5時,由此時函數(shù)的最大值為0與題意不符,可得出該情況不存在;當h>5時,根據二次函數(shù)的性質可得出關于h的一元二次方程,解之即可得出結論.綜上即可得出結論.詳解:如圖,當h<2時,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);當2≤h≤5時,y=-(x-h)2的最大值為0,不符合題意;當h>5時,有-(5-h)2=-1,解得:h3=4(舍去),h4=1.綜上所述:h的值為1或1.故選B.點睛:本題考查了二次函數(shù)的最值以及二次函數(shù)的性質,分h<2、2≤h≤5和h>5三種情況求出h值是解題的關鍵.5、C【解析】試題分析:如圖所示:∠NOQ=138°,選項A錯誤;∠NOP=48°,選項B錯誤;如圖可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,選項C正確;由以上可得,∠MOQ與∠MOP不互補,選項D錯誤.故答案選C.考點:角的度量.6、A【解析】
解:連接OA,OC,過點O作OD⊥AC于點D,∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=OC=2,∴AC=2CD=4.故選A.【點睛】本題考查三角形的外接圓;勾股定理;圓周角定理;垂徑定理.7、D【解析】分析:根據完全平方公式、積的乘方法則、同底數(shù)冪的除法法則和算術平方根的定義計算,判斷即可.詳解:(x+y)2=x2+2xy+y2,A錯誤;(-xy2)3=-x3y6,B錯誤;x6÷x3=x3,C錯誤;==2,D正確;故選D.點睛:本題考查的是完全平方公式、積的乘方、同底數(shù)冪的除法以及算術平方根的計算,掌握完全平方公式、積的乘方法則、同底數(shù)冪的除法法則和算術平方根的定義是解題的關鍵.8、C【解析】
利用數(shù)軸先判斷出a、b的正負情況以及它們絕對值的大小,然后再進行比較即可.【詳解】解:由a、b在數(shù)軸上的位置可知:a<1,b>1,且|a|>|b|,∴a+b<1,ab<1,a﹣b<1,a÷b<1.故選:C.9、D【解析】【分析】根據正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定定理對選項逐一進行分析,即可判斷出答案.【詳解】A.對角線互相垂直且相等的平行四邊形是正方形,正確,不符合題意;B.對角線互相垂直平分的四邊形是菱形,正確,不符合題意;C.對角線互相平分的四邊形是平行四邊形,正確,不符合題意;D.對角線相等的平行四邊形是矩形,故D選項錯誤,符合題意,故選D.【點睛】本題考查了正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定等,熟練掌握相關判定定理是解答此類問題的關鍵.10、D【解析】
分別利用平均數(shù)以及方差和中位數(shù)的定義分析,進而求出答案.【詳解】2、3、4的平均數(shù)為:(2+3+4)=3,中位數(shù)是3,方差為:[(2﹣3)2+(3﹣3)2+(3﹣4)2]=;3、4、5的平均數(shù)為:(3+4+5)=4,中位數(shù)是4,方差為:[(3﹣4)2+(4﹣4)2+(5﹣4)2]=;故中位數(shù)不相等,方差相等.故選:D.【點睛】本題考查了平均數(shù)、中位數(shù)、方差的意義,解答本題的關鍵是熟練掌握這三種數(shù)的計算方法.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】
根據(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案.【詳解】∵a1-b1=8,
∴(a+b)(a-b)=8,
∵a+b=4,
∴a-b=1,
故答案是:1.【點睛】考查了平方差,關鍵是掌握(a+b)(a-b)=a1-b1.12、【解析】
利用勾股定理求出AB,再證明OC=OA=OD,推出∠OCB=∠ODC,可得tan∠OCB=tan∠ODC=,由此即可解決問題.【詳解】在Rt△ABC中,∵AC=4,BC=3,∠ACB=90°,∴AB==5,∵四邊形ABDE是菱形,∴AB=BD=5,OA=OD,∴OC=OA=OD,∴∠OCB=∠ODC,∴tan∠OCB=tan∠ODC==,故答案為.【點睛】本題考查菱形的性質、勾股定理、直角三角形斜邊中線的性質、銳角三角函數(shù)等知識,解題的關鍵是靈活運用所學知識解決問題,學會用轉化的思想思考問題,屬于中考??碱}型.13、m≥1.【解析】分析:先解第一個不等式,再根據不等式組的解集是x<1,從而得出關于m的不等式,解不等式即可.詳解:解第一個不等式得,x<1,∵不等式組的解集是x<1,∴m≥1,故答案為m≥1.點睛:本題是已知不等式組的解集,求不等式中字母取值范圍的問題.可以先將字母當作已知數(shù)處理,求出解集與已知解集比較,進而求得字母的范圍.求不等式的公共解,要遵循以下原則:同大取較大,同小取較小,大小小大中間找,大大小小解不了.14、直角三角形.【解析】
根據題意,畫出圖形,用垂直平分線的性質解答.【詳解】點O落在AB邊上,連接CO,∵OD是AC的垂直平分線,∴OC=OA,同理OC=OB,∴OA=OB=OC,∴A、B、C都落在以O為圓心,以AB為直徑的圓周上,∴∠C是直角.∴這個三角形是直角三角形.【點睛】本題考查線段垂直平分線的性質,解題關鍵是準確畫出圖形,進行推理證明.15、2【解析】解:分別過點A、B作x軸的垂線,垂足分別為D、E.則AD∥BE,AD=2BE=,∴B、E分別是AC、DC的中點.∴△ADC∽△BEC,∵BE:AD=1:2,∴EC:CD=1:2,∴EC=DE=a,∴OC=3a,又∵A(a,),B(2a,),∴S△AOC=AD×CO=×3a×==1,解得:k=2.16、【解析】
列舉出所有情況,看兩個骰子向上的一面的點數(shù)和小于6的情況占總情況的多少即可.【詳解】解:列表得:
兩個骰子向上的一面的點數(shù)和小于6的有10種,
則其和小于6的概率是,
故答案為:.【點睛】本題考查了列表法與樹狀圖法,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件樹狀圖法適用于兩步或兩步以上完成的事件解題時還要注意是放回實驗還是不放回實驗用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.三、解答題(共8題,共72分)17、(1)證明見解析;(2)【解析】試題分析:(1)連接OB,由SSS證明△PAO≌△PBO,得出∠PAO=∠PBO=90°即可;(2)連接BE,證明△PAC∽△AOC,證出OC是△ABE的中位線,由三角形中位線定理得出BE=2OC,由△DBE∽△DPO可求出.試題解析:(1)連結OB,則OA=OB.如圖1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分線,∴PA=PB.在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO.∵PB為⊙O的切線,B為切點,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切線;(2)連結BE.如圖2,∵在Rt△AOC中,tan∠BAD=tan∠CAO=,且OC=4,∴AC=1,則BC=1.在Rt△APO中,∵AC⊥OP,∴△PAC∽△AOC,∴AC2=OC?PC,解得PC=9,∴OP=PC+OC=2.在Rt△PBC中,由勾股定理,得PB=,∵AC=BC,OA=OE,即OC為△ABE的中位線.∴OC=BE,OC∥BE,∴BE=2OC=3.∵BE∥OP,∴△DBE∽△DPO,∴,即,解得BD=.18、△A′DE是等腰三角形;證明過程見解析.【解析】試題分析:當四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.先證明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判斷△DA′E的形狀.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根據A′D=DE=EF即可證明.試題解析:當四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四邊形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,∠EA∴△A′DE≌△EFC′.考點:1.菱形的性質;2.全等三角形的判定;3.平移的性質.19、-2(m+3),-1.【解析】
此題的運算順序:先括號里,經過通分,再約分化為最簡,最后代值計算.【詳解】解:(m+2-)?,=,=-,=-2(m+3).把m=-代入,得,原式=-2×(-+3)=-1.20、(1)補充表格見解析;(2)①61;②見解析.【解析】
(1)根據所給數(shù)據分析補充表格即可.(2)①根據概率公式計算即可.②根據平均數(shù)、中位數(shù)分別進行分析并根據分析結果給出建議即可.【詳解】(1)補充表格如下:范圍25≤x≤2930≤x≤3435≤x≤3940≤x≤4445≤x≤4950≤x≤5455≤x≤59人數(shù)1032734(2)①估計該校九年級女生在中考體育測試中1分鐘“仰臥起坐”項目可以得到滿分的人數(shù)為136×≈61,故答案為:61;②從平均數(shù)角度看,該校女生1分鐘仰臥起坐的平均成績高于區(qū)縣水平,整體水平較好;從中位數(shù)角度看,該校成績中等水平偏上的學生比例低于區(qū)縣水平,該校測試成績的滿分率低于區(qū)縣水平;建議:該校在保持學校整體水平的同事,多關注接近滿分的學生,提高滿分成績的人數(shù).【點睛】本題考查的是統(tǒng)計表的綜合運用,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關鍵.21、(1)BD,CE的關系是相等;(2)或;(3)1,1【解析】分析:(1)依據△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,進而得到△ABD≌△ACE,可得出BD=CE;(2)分兩種情況:依據∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到=,進而得到PD=;依據∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到,進而得出PB=,PD=BD+PB=;(3)以A為圓心,AC長為半徑畫圓,當CE在⊙A下方與⊙A相切時,PD的值最?。划擟E在在⊙A右上方與⊙A相切時,PD的值最大.在Rt△PED中,PD=DE?sin∠PED,因此銳角∠PED的大小直接決定了PD的大?。謨煞N情況進行討論,即可得到旋轉過程中線段PD的最小值以及最大值.詳解:(1)BD,CE的關系是相等.理由:∵△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE,∴BD=CE;故答案為相等.(2)作出旋轉后的圖形,若點C在AD上,如圖2所示:∵∠EAC=90°,∴CE=,∵∠PDA=∠AEC,∠PCD=∠ACE,∴△PCD∽△ACE,∴,∴PD=;若點B在AE上,如圖2所示:∵∠BAD=90°,∴Rt△ABD中,BD=,BE=AE﹣AB=2,∵∠ABD=∠PBE,∠BAD=∠BPE=90°,∴△BAD∽△BPE,∴,即,解得PB=,∴PD=BD+PB=+=,故答案為或;(3)如圖3所示,以A為圓心,AC長為半徑畫圓,當CE在⊙A下方與⊙A相切時,PD的值最?。划擟E在在⊙A右上方與⊙A相切時,PD的值最大.如圖3所示,分兩種情況討論:在Rt△PED中,PD=DE?sin∠PED,因此銳角∠PED的大小直接決定了PD的大小.①當小三角形旋轉到圖中△ACB的位置時,在Rt△ACE中,CE==4,在Rt△DAE中,DE=,∵四邊形ACPB是正方形,∴PC=AB=3,∴PE=3+4=1,在Rt△PDE中,PD=,即旋轉過程中線段PD的最小值為1;②當小三角形旋轉到圖中△AB'C'時,可得DP'為最大值,此時,DP'=4+3=1,即旋轉過程中線段PD的最大值為1.故答案為1,1.點睛:本題屬于幾何變換綜合題,主要考查了等腰直角三角形的性質、旋轉變換、全等三角形的判定和性質、相似三角形的判定和性質、圓的有關知識,解題的關鍵是靈活運用這些知識解決問題,學會分類討論的思想思考問題,學會利用圖形的特殊位置解決最值問題.22、(1)證明見解析;(2)1.【解析】試題分析:(1)根據垂直的定義可得∠CEB=90°,然后根據角平分線的性質和等腰三角形的性質,判斷出∠1=∠D,從而根據平行線的判定得到CE∥BD,根據平行線的性質得∠DBA=∠CEB,由此可根據切線的判定得證結果;(2)連接AC,由射影定理可得CE試題解析:(1)證明:∵CE⊥AB,∴∠CEB=90∵CD平分∠ECB,BC=BD,∴∠1=∠2,∠2=∠D.∴∠1=∠D.∴CE∥BD.∴∠DBA=∠CEB=90∵AB是⊙O的直徑,∴BD是⊙O的切線.(2)連接AC,∵AB是⊙O直徑,∴∠ACB=90∵CE⊥AB,可得CE∴在Rt△CEB中,∠CEB=90°,由勾股定理得BC=∴BD=BC=20.∵∠1=∠D,∠EFC=∠BFD,∴△EFC∽△BFD.∴.∴1220∴BF=1.考點:切線的判定,相似三角形,勾股定理23、(1)y=﹣x2+2x+1.(2)2≤Ey<2.(1)當m=1.5時,S△BCE有最大值,S△BCE的最大值=.【解析】分析:(1)1)把A、B兩點代入拋物線解析式即可;(2)設,利用求線段中點的公式列出關于m的方程組,再利用0<m<1即可求解;(1)連結BD,過點D作x軸的垂線交BC于點H,由,設出點D的坐標,進而求出點H的坐標,利用三角形的面積公式求出,再利用公式求二次函數(shù)的最值即可.詳解:(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《寵物鑒賞》課件-貓的特點及飼養(yǎng)要點
- 2026年赤峰工業(yè)職業(yè)技術學院單招職業(yè)適應性測試題庫附答案詳解
- 跨境支付匯率信息實時推送協(xié)議
- 護理個人工作計劃2026年3篇
- 2026年教師培訓計劃方案5篇范文大全
- 2025年道路運輸兩類人員考試模擬試題及答案
- 2025年畜牧水產養(yǎng)殖機械合作協(xié)議書
- 2025年助動自行車及其零件項目建議書
- 2025年營養(yǎng)型輸液合作協(xié)議書
- 抗生素耐藥護理查房
- 研磨鉆石的專業(yè)知識培訓課件
- 2025年傳達學習醫(yī)療機構重大事故隱患判定清單會議記錄
- 機動車檢驗機構管理年度評審報告
- 百度無人機基礎知識培訓課件
- 2025至2030中國家用燃氣報警器市場現(xiàn)狀發(fā)展分析及發(fā)展戰(zhàn)略規(guī)劃報告
- 金融行業(yè)行政管理社會調查報告范文
- 2025年中國高油玉米數(shù)據監(jiān)測報告
- 水印江南美食街招商方案
- 二零二五年度綠色生態(tài)住宅小區(qū)建設工程合同協(xié)議
- 2025-2030全球膜處理系統(tǒng)行業(yè)調研及趨勢分析報告
- 多導睡眠監(jiān)測課件
評論
0/150
提交評論