版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
One-andtwo-dimensionalAndersonmodelwithlong-rangecorrelated-disorder一維和二維關(guān)聯(lián)無序安德森模型
One-andtwo-dimensionalAndersonmodelwithlong-rangecorrelated-disorderAndersonmodel-IntroductionEntanglementin1D2DEntanglement2Dconductance2Dtransmission2DmagnetoconductanceAndersonmodel-IntroductionWhatisadisorderedsystem?Nolong-rangetranslationalorderTypesofdisorder
(a)crystal(b)Componentdisorder(c)positiondisorder(d)topologicaldisorder
diagonaldisorder
off-diagonaldisordercompletedisorderLocalizationprediction:anelectron,whenplacedinastrongdisorderedlattice,willbeimmobile[1]P.W.Anderson,Phys.Rev.109,1492(1958).
Andersonmodel-IntroductionByP.W.Andersonin1958[1]Andersonmodel-IntroductionIn1983and1984Johnextendedthelocalizationconceptsuccessfullytotheclassicalwaves,suchaselasticwaveandopticalwave[1].Followingthepreviousexperimentalwork,TalSchwartzetal.realizedtheAndersonlocalizationwithdisorderedtwo-dimensionalphotoniclattices[2].[1]JohnS,SompolinskyHandStephenMJ1983Phys.Rev.B275592;JohnSandStephenMJ1983286358;JohnS1984Phys.Rev.Lett.
532169[2]SchwartzTal,BartalGuy,FishmanShmuelandSegev
Mordechai2007Nature
44652Andersonmodel-openproblemsAbrahansetal.’sscalingtheoryforlocalizationin1979[1](3000citations,oneofthemostimportantpapersincondensedmatterphysics)
Predictions(1)nometal-insulatortransitionin2ddisorderedsystemsSupportedbyexperimentsinearly1980s.
(2)(dephasingtime
)ResultsofJ.J.Linin1987[2]
[1]E.Abrahans,P.W.Anderson,D.C.LicciardelloandT.V.Ramakrisbnan,Phys.Rev.Lett.42,673(1979)[2]J.J.LinandN.Giorano,Phys.Rev.B35,1071(1987);J.J.LinandJ.P.Bird,J.Phys.:Condes.Matter14,R501(2002).
ResultsofJ.J.Linin1987[2]dephasingtimeWorkofHui
Xuetal.onsystemswithcorrelateddisorder:劉小良,徐慧,等,物理學報,55(5),2493(2006);劉小良,徐慧,等,物理學報,55(6),2949(2006);徐慧,等,物理學報,56(2),1208(2007);徐慧,等,物理學報,56(3),1643(2007);馬松山,徐慧,等,物理學報,56(5),5394(2007);馬松山,徐慧,等,物理學報,56(9),5394(2007)。Andersonmodel-newpointsofview1。CorrelateddisorderCorrelationanddisorderaretwoofthemostimportantconceptsinsolidstatephysicsPower-lawcorrelateddisorderGaussiancorrelateddisorder2。Entanglement[1]:anindexformetal-insulator,localization-delocalizationtransition”entanglementisakindofunlocalcorrelation”(MPLB19,517,2005).Entanglementofspinwavefunctions:fourstatesinonesite:0spin;1up;1down;1upand1downEntanglementofspatialwavefunctions(spinlessparticle):twostates:occupiedorunoccupiedMeasuresofentanglement:vonNewmannentropyandconcurrence[1]HaibinLiandXiaoguangWang,Mod.Phys.Lett.B19,517(2005);Junpeng
Cao,GangXiong,YupengWang,X.R.Wang,Int.J.Quant.Inform.4,705(2006).HefengWangandSabreKais,Int.J.Quant.Inform.4,827(2006).
Andersonmodel-newpointsofview3.newapplications(1)quantumchaos(2)electrontransportinDNAchainsTheimportanceoftheproblemoftheelectrontransportinDNA[1](3)pentacene[2](并五苯)MolecularelectronicsOrganicfield-effect-transistorspentacene:layeredstructure,2DAndersonsystem[1]R.G.Endres,D.L.CoxandR.R.P.Singh,Rev.Mod.Phys.76,195(2004);
StephanRoche,Phys.Rev.Lett.91,108101(2003).[2]M.UngeandS.Stafstrom,SyntheticMetals,139(2003)239-244;J.Cornil,J.Ph.CalbertandJ.L.Bredas,J.Am.Chem.Soc.,123,1520-1521(2001).
DNAstructureEntanglementinone-dimensionalAndersonmodelwithlong-rangecorrelateddisorder
one-dimensionalnearest-neighbortight-bindingmodelConcurrence:vonNeumannentropy
Left.TheaverageconcurrenceoftheAndersonmodelwithpower-lawcorrelationasthefunctionofdisorderdegreeWandforvarious.Abandstructureisdemonstrated.Right.TheaverageconcurrenceoftheAndersonmodelwithpower-lawcorrelationfor=3.0andatthebiggerWrange.Ajumpingfromtheupperbandtothelowerbandisshown
2DentanglementMethod:takingthe2Dlatticeas1Dchain[1]LongyanGongandPeiqingTong,Phys.Rev.E74(2006)056103.;Phys.Rev.A71,042333(2005).
Quantumsmallworldnetworkin[1]squarelatticeLeft.TheaverageconcurrenceoftheAndersonmodelwithpower-lawcorrelationasthefunctionofdisorderdegreeWandforvarious.Abandstructureisdemonstrated.Right.TheaveragevonNewmannentropyoftheAndersonmodelwithpower-lawcorrelationasthefunctionofdisorderdegreeWandforvarious.Abandstructureisdemonstrated.LonczosmethodEntanglementinDNAchainguanine(G),adenine(A),cytosine(C),thymine(T)QusiperiodicalmodelR-Smodeltogeneratethequsiperiodicalsequencewithfourelements(G,C,A,T).Theinflation(substitutions)ruleisG→GC;C→GA;A→TC;T→TA.StartingwithG(thefirstgeneration),thefirstseveralgenerationsareG,GC,GCGA,GCGAGCTC,GCGAGCTCGCGATAGA???.LetFitheelement(site)numberoftheR-Ssequenceintheithgeneration,wehaveFi+1=2Fifori>=1.Sothesitenumberofthefirstseveralgenerationsare1,2,4,8,16,???,andforthe12thgeneration,thesitenumberis2048.TheaverageconcurrenceoftheAndersonmodelfortheDNAchainasthefunctionofsitenumber.Theresultsarecomparedwiththeuncorrelateduniformdistributioncase.
SpinEntanglementofnon-interactingmultipleparticles:Green’sfunctionmethodFinitetemperaturetwobodyGreen’sfunctionOneparticledensitymatrixandOnebodyGreen’sfunctionTwoparticledensitymatrixwhere,HFapprox.
Ifandwhere&whereGeneralizedWernerStatethenInbasisSeparabilitycriterion=PPT=alwayssatisfiedsinceConductanceandmagnetoconductanceoftheAndersonmodelwithlong-rangecorrelateddisorder(1)Staticconductanceofthetwo-dimensionalquantumdotswithlong-rangecorrelateddisorder
Idea:thedistributionfunctionoftheconductanceinthelocalizedregime1d:clearGaussian2d:unclearMethodtocalculatingtheconductance:Green’sfunctionandKuboformulaFig.1Fig.2aFig.2bFig.1ConductanceasthefunctionofFermienergyforthesystemswithpower-lawcorrelateddisorder(W=1.5)forvariousexponent.Ther
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 人體胚胎發(fā)育:增強現(xiàn)實訓練課件
- 評估報告內(nèi)部復審制度
- 要嚴守值班值守制度
- 2025年洛陽中信醫(yī)院筆試及答案
- 2025年沈陽醫(yī)院事業(yè)編5月考試及答案
- 2025年采編崗位筆試試題及答案
- 2025年城投造價崗位筆試及答案
- 2025年彭州市事業(yè)單位考試面試及答案
- 2025年教資不需要筆試的面試及答案
- 2025年獨山子石化筆試及答案
- 全球科普活動現(xiàn)狀及發(fā)展趨勢
- 2024年重慶市中考語文考試說明
- 2024版鋁錠采購合同
- YYT 0644-2008 超聲外科手術(shù)系統(tǒng)基本輸出特性的測量和公布
- 建筑工程 施工組織設(shè)計范本
- 五筆打字簡明教程
- 工廠產(chǎn)能計劃書
- 工程全過程造價咨詢服務方案
- 研學旅行概論 課件 第一章 研學旅行的起源與發(fā)展
- 第1課+古代亞非【中職專用】《世界歷史》(高教版2023基礎(chǔ)模塊)
- 社會調(diào)查研究方法課程教學設(shè)計實施方案
評論
0/150
提交評論