下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第三節(jié)格林公式及其應(yīng)用一、格林公式二、平面上曲線積分與路徑無(wú)關(guān)的條件三、二元函數(shù)的全微分求積四、小結(jié)練習(xí)題一、格林公式牛頓萊布尼茨公式定積分可通過(guò)原函數(shù)在區(qū)間端點(diǎn)上的函數(shù)值來(lái)表達(dá)D問(wèn)題:二重積分能否表達(dá)為某個(gè)函數(shù)在D
的邊界曲線
L
上的曲線積分?在一定條件下,格林公式回答了上述問(wèn)題。設(shè)D
為平面區(qū)域,如果D
內(nèi)任一閉曲線所圍成的部分都屬于D,則稱D
為平面單連通區(qū)域,否則稱為復(fù)連通區(qū)域.復(fù)連通區(qū)域單連通區(qū)域DD(1)區(qū)域連通性的分類D復(fù)連通區(qū)域(2)區(qū)域D
的邊界L
的正向:當(dāng)觀察者在
L
上行走時(shí),D
內(nèi)在他近處的部分總在他的左邊。D(3)、格林公式定理1:設(shè)平面閉區(qū)域D
由分段光滑的曲線
L
圍成函數(shù)P(x,y),Q(x,y)在
D
上具有一階連續(xù)偏導(dǎo)數(shù),其中L是D
的取正向的邊界曲線。格林公式證明:(1)設(shè)D
既是X
型,又是Y
型區(qū)域。X
型:證明:(1)設(shè)D
既是X
型,又是Y
型區(qū)域。X
型:證明:(1)設(shè)D
既是X
型,又是Y
型區(qū)域。X
型:Y
型:證明:(1)設(shè)D
既是X
型,又是Y
型區(qū)域。X
型:Y
型:證明:(1)設(shè)D
既是X
型,又是Y
型區(qū)域。X
型:Y
型:證明:(1)設(shè)D
既是X
型,又是Y
型區(qū)域。X
型:Y
型:所以兩式相加得(2)若D
不具有(1)的特點(diǎn),則將D
分成若干塊D作輔助線AB
將D
分成三塊它們均既是X
型又是Y
型區(qū)域格林公式仍成立幾點(diǎn)說(shuō)明:(1)若D
為復(fù)連通區(qū)域則曲線L
應(yīng)包括內(nèi)外所有邊界并且它們對(duì)D
均取正向。(2)格林公式建立了平面上的曲線積分與二重積分的關(guān)系,它是牛頓萊布尼茨公式在平面上的推廣。主要用途:實(shí)現(xiàn)曲線積分與二重積分之間的轉(zhuǎn)換,而經(jīng)常用來(lái)將復(fù)雜的曲線積分轉(zhuǎn)化為二重積分。(3)便于記憶的形式若記則格林公式可表示為(4)若取則有同理,若取則有若取則有xyoAB格林公式的應(yīng)用舉例解:方法1,用曲線積分法起點(diǎn)A,終點(diǎn)B,xyoAB解:方法2:用格林公式注意L
不是一條封閉的曲線補(bǔ)充有向線段:則為封閉曲線,所圍區(qū)域記為D解:方法2:用格林公式xyoAB在上,y=0,在上,x=0,xyo解:在應(yīng)用格林公式將二重積分化為曲線積分時(shí),關(guān)鍵是要找到P(x,y)和Q(x,y),使得并且這樣的P
,Q
在D
的邊界上的曲線積分應(yīng)較簡(jiǎn)單經(jīng)觀察,可取應(yīng)用格林公式xyo解:在AB
上,y=1,在BO
上,x=0所以xyo解:所以解令經(jīng)計(jì)算有應(yīng)用格林公式?格林公式的條件:P、Q
在D
上具有一階連續(xù)偏導(dǎo)數(shù)解令經(jīng)計(jì)算有xyoL應(yīng)用格林公式解令經(jīng)計(jì)算有yxoP、Q
在D
內(nèi)不連續(xù)為了能用格林公式,在D
內(nèi)以原點(diǎn)為中心作一小圓在復(fù)連通域格林公式條件滿足解yxo在復(fù)連通域格林公式條件滿足解yxo起點(diǎn)A,終點(diǎn)A解yxoxyoL該方法俗稱“挖洞法?!苯鈟xoxyoL思考題:為什么要用小圓周去“挖洞”?參考題:計(jì)算其中L
是以(1,0)為中心,R
為半徑的圓周(R>1),取逆時(shí)針?lè)较蚶?:求其中,L
是以(a,0)為中心,a
為半徑的上半圓周,逆時(shí)針?lè)较?,m
為常數(shù)。解:分析:被積函數(shù)比較復(fù)雜,無(wú)論L
的方程取什么形式,直接用曲線積分的方法都比較困難。故考慮用格林公式表達(dá)式簡(jiǎn)單問(wèn)題:L不是封閉的曲線。yx0例4:求其中,L
是以(a,0)為中心,a
為半徑的上半圓周,逆時(shí)針?lè)较?,m
為常數(shù)。補(bǔ)充有向線段OA,在L
與OA
所圍的區(qū)域D
上yx0解:例4:求其中,L
是以(a,0)為中心,a
為半徑的上半圓周,逆時(shí)針?lè)较?,m
為常數(shù)。yx0解:在上,y=0,
x
從0變到2a
例4:求其中,L
是以(a,0)為中心,a
為半徑的上半圓周,逆時(shí)針?lè)较?,m
為常數(shù)。yx0解:(1)該題用到的方法俗稱“封口法”幾點(diǎn)小結(jié)(2)“挖洞法”和“封口法”是格林公式應(yīng)用中兩類常見(jiàn)的典型方法。(3)當(dāng)曲線積分中,函數(shù)P
、Q
使得等于零、常數(shù)或比較簡(jiǎn)單時(shí),要考慮用格林公式。習(xí)題113:2,4,6,7
作業(yè)(一)二、曲線積分與路徑無(wú)關(guān)的條件例3:計(jì)算其中L
為如下三條路徑經(jīng)計(jì)算皆有事實(shí)上,可以證明沿從起點(diǎn)O
到終點(diǎn)B的任何一條光滑路徑,皆有GyxoA定義:如果在區(qū)域G內(nèi),P、Q
具有一階連續(xù)偏導(dǎo)數(shù)B點(diǎn)A
與B
是G
內(nèi)任意兩點(diǎn),
如果對(duì)于G
內(nèi)從A
到B的任意兩條曲線恒有問(wèn)題:什么樣的曲線積分與路徑無(wú)關(guān)?問(wèn)題:什么樣的曲線積分與路徑無(wú)關(guān)?GyxoAB即所以注意:為G
內(nèi)的一條有向封閉曲線結(jié)論:曲線積分與路徑無(wú)關(guān)其中C
為G
內(nèi)任意一條封閉曲線GyxoAB結(jié)論:曲線積分與路徑無(wú)關(guān)其中C
為G
內(nèi)任意一條封閉曲線進(jìn)一步,假設(shè)G
為單連通區(qū)域D
為C
所圍閉區(qū)域,則由格林公式其中,D
為G
內(nèi)任意一閉子區(qū)域。從而可推出在整個(gè)G
內(nèi)定理2:設(shè)G
是一個(gè)單連通區(qū)域,P、Q
在G
內(nèi)具有一階連續(xù)偏導(dǎo)數(shù),則曲線積分在G
內(nèi)與路徑無(wú)關(guān)(或沿G
內(nèi)任意閉曲線積分為零)的充分必要條件是在G
內(nèi)恒成立。注意:在應(yīng)用該定理時(shí),一定要保證定理的條件:(1)G
是一個(gè)單連通區(qū)域,(2)P、Q
在G
內(nèi)具有一階連續(xù)偏導(dǎo)數(shù)。小結(jié):設(shè)G
是一個(gè)單連通區(qū)域,P、Q
在G
內(nèi)具有一階連續(xù)偏導(dǎo)數(shù),則以下命題相互等價(jià)(1)曲線積分(2)其中,C
為G
內(nèi)任意一條閉曲線;(3)其中,D
為G內(nèi)任意一個(gè)閉子區(qū)域;(4)在G
內(nèi)與路徑無(wú)關(guān);在G內(nèi)恒成立。例1:證明曲線積分證明:顯然整個(gè)xoy面是一個(gè)單連通區(qū)域,又所以,由定理2,曲線積分在整個(gè)xoy
面內(nèi)與路徑無(wú)關(guān);在整個(gè)
xoy
面
內(nèi)恒成立。在整個(gè)
xoy
面內(nèi)與路徑無(wú)關(guān)。它們均在整個(gè)xoy
面內(nèi)具有一階連續(xù)偏導(dǎo)數(shù)。例2:計(jì)算曲線積分在第一象限部分到A(1,1)的路經(jīng)。其中L
為從點(diǎn)O(0,0)沿圓周yx0解:分析:由被積函數(shù)知,直接用曲線積分的方法比較困難。由于故所求曲線積分在整個(gè)xoy
面內(nèi)與路徑無(wú)關(guān),因此考慮改變積分路徑:所以例2:計(jì)算曲線積分在第一象限部分到A(1,1)的路經(jīng)。其中L
為從點(diǎn)O(0,0)沿圓周yx0在OB上,y=0,在AB上,x=1,解:例2:計(jì)算曲線積分在第一象限部分到A(1,1)的路經(jīng)。其中L
為從點(diǎn)O(0,0)沿圓周解:yx0三、二元函數(shù)的全微分求積假設(shè)G
是一個(gè)單連通區(qū)域,P、Q
在G
內(nèi)具有一階連續(xù)偏導(dǎo)數(shù),若曲線積分在G
內(nèi)與路徑無(wú)關(guān)Gyxo首先在
G
內(nèi)取一定點(diǎn)又設(shè)B(x,y)為G
內(nèi)的一動(dòng)點(diǎn)在G
內(nèi)任作一條從A
到B
的曲線弧則曲線積分僅與起點(diǎn)A
和終點(diǎn)B
有關(guān),與路徑L
無(wú)關(guān),記假設(shè)二元函數(shù)u=u(x,y)可微,則反過(guò)來(lái),若給定一個(gè)表達(dá)式問(wèn)它是否一定是某個(gè)二元函數(shù)u(x,y)的全微分式回答是否定的。問(wèn)題:在什么條件下,表達(dá)式一定是某個(gè)二元函數(shù)u(x,y)的全微分式?如何求出這個(gè)二元函數(shù)u(x,y)?在G
內(nèi)為某個(gè)二元函數(shù)u(x,y)的全微分的充要條件是定理3:設(shè)G
是一個(gè)單連通區(qū)域,P、Q
在G
內(nèi)具有一階連續(xù)偏導(dǎo)數(shù),則表達(dá)式并且證明略注意在上述公式中(x,y)既是自變量,又是積分變量可記為計(jì)算函數(shù)的方法Gtso(1)沿路徑AC+CB
計(jì)算(2)沿路徑AD+DB
計(jì)算例3驗(yàn)證是某個(gè)函數(shù)的全微分,tso并求出一個(gè)這樣的函數(shù)在整個(gè)
xoy
面內(nèi)恒成立,解:因此在整個(gè)xoy
面內(nèi),是某個(gè)函數(shù)的全微分,方法一:沿如圖所示路徑求u(x,y)例3驗(yàn)證是某個(gè)函數(shù)的全微分,并求出一個(gè)這樣的函數(shù)tso解:(1)沿如圖所示路徑求u(x,y)例3驗(yàn)證是某個(gè)函數(shù)的全微分,并求出一個(gè)這樣的函數(shù)解:方法2:設(shè)則有兩邊關(guān)于x
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年事業(yè)單位公開(kāi)招聘50人備考題庫(kù)及答案詳解1套
- 2025年北京協(xié)和醫(yī)院內(nèi)分泌科于淼課題組合同制科研助理招聘?jìng)淇碱}庫(kù)及1套參考答案詳解
- 2025年桂陽(yáng)一國(guó)企招聘?jìng)淇碱}庫(kù)及參考答案詳解一套
- 2025年昭通市永善縣緊密型醫(yī)共體溪洛渡街道衛(wèi)生院分院招聘9人備考題庫(kù)及一套完整答案詳解
- 2025年山東省口腔醫(yī)院(山東大學(xué)口腔醫(yī)院)公開(kāi)招聘人員備考題庫(kù)附答案詳解
- 2025年晉江市新塘街道辦事處公開(kāi)招聘編外人員的備考題庫(kù)完整參考答案詳解
- 2025年杏濱街道社區(qū)衛(wèi)生服務(wù)中心補(bǔ)充編外人員招聘?jìng)淇碱}庫(kù)及1套完整答案詳解
- 2025年彌勒市人民醫(yī)院公開(kāi)招聘?jìng)浒钢乒ぷ魅藛T73人備考題庫(kù)及1套參考答案詳解
- 2025年湖南省社會(huì)主義學(xué)院公開(kāi)招聘高層次人才備考題庫(kù)有答案詳解
- 2025年浙江大學(xué)愛(ài)丁堡大學(xué)聯(lián)合學(xué)院方兆元課題組科研助理招聘?jìng)淇碱}庫(kù)及1套參考答案詳解
- 附睪囊腫的臨床特征
- 《導(dǎo)診服務(wù)禮儀》課件
- 2024年征用農(nóng)村集體土地宣傳講話稿(4篇)
- GB/T 2423.65-2024環(huán)境試驗(yàn)第2部分:試驗(yàn)方法試驗(yàn):鹽霧/溫度/濕度/太陽(yáng)輻射綜合
- 家園共育背景下幼兒良好生活習(xí)慣與能力的培養(yǎng)研究
- 《毛遂自薦》成語(yǔ)故事
- 小班化教學(xué)和合作學(xué)習(xí)
- 《繼發(fā)性高血壓》課件
- 垃圾中轉(zhuǎn)站運(yùn)營(yíng)管理投標(biāo)方案
- 數(shù)字媒體與數(shù)字廣告
- 綜合樓裝飾裝修維修改造投標(biāo)方案(完整技術(shù)標(biāo))
評(píng)論
0/150
提交評(píng)論