文本分類綜述74課件_第1頁
文本分類綜述74課件_第2頁
文本分類綜述74課件_第3頁
文本分類綜述74課件_第4頁
文本分類綜述74課件_第5頁
已閱讀5頁,還剩32頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

文本分類綜述2002年12月報(bào)告內(nèi)容文本分類的定義和應(yīng)用文本分類的方法文本分類的評(píng)估指標(biāo)參考文獻(xiàn)和資源文本分類的定義和應(yīng)用應(yīng)用垃圾郵件的判定(spamornotspam)類別{spam,not-spam}新聞出版按照欄目分類類別{政治,體育,軍事,…}詞性標(biāo)注類別{名詞,動(dòng)詞,形容詞,…}詞義排歧類別{詞義1,詞義2,…}計(jì)算機(jī)論文的領(lǐng)域類別ACMsystemH:informationsystemsH.3:informationretrievalandstorage文本分類的方法人工方法和自動(dòng)方法人工方法結(jié)果容易理解足球and聯(lián)賽體育類費(fèi)時(shí)費(fèi)力難以保證一致性和準(zhǔn)確性(40%左右的準(zhǔn)確率)專家有時(shí)候憑空想象知識(shí)工程的方法建立專家系統(tǒng)(80年代末期)自動(dòng)的方法(學(xué)習(xí))結(jié)果可能不易理解快速準(zhǔn)確率相對(duì)高(準(zhǔn)確率可達(dá)60%或者更高)來源于真實(shí)文本,可信度高特征抽取(featureextraction)預(yù)處理去掉html一些tag標(biāo)記禁用詞(stopwords)去除、詞根還原(stemming)(中文)分詞、詞性標(biāo)注、短語識(shí)別、…詞頻統(tǒng)計(jì)TFi,j:特征i在文檔j中出現(xiàn)次數(shù),詞頻(TermFrequency)DFi:所有文檔集合中出現(xiàn)特征i的文檔數(shù)目,文檔頻率(DocumentFrequency)數(shù)據(jù)清洗:去掉不合適的噪聲文檔或文檔內(nèi)垃圾數(shù)據(jù)文本表示向量空間模型降維技術(shù)特征選擇(FeatureSelection)特征重構(gòu)(Re-parameterisation,如LSI)文本表示向量空間模型(VectorSpaceModel)M個(gè)無序標(biāo)引項(xiàng)ti(特征),詞根/詞/短語/其他每個(gè)文檔dj可以用標(biāo)引項(xiàng)向量來表示(a1j,a2j,…,aMj)權(quán)重計(jì)算,N個(gè)訓(xùn)練文檔AM*N=(aij)相似度比較Cosine計(jì)算內(nèi)積計(jì)算Term的粒度Character,字:中Word,詞:中國Phrase,短語:中國人民銀行Concept,概念同義詞:開心高興興奮相關(guān)詞cluster,wordcluster:葛非/顧俊N-gram,N元組:中國國人人民民銀銀行某種規(guī)律性模式:比如某個(gè)window中出現(xiàn)的固定模式DavidLewis等一致地認(rèn)為:(英文分類中)使用優(yōu)化合并后的Words比較合適特征選擇(1)基于DFTerm的DF小于某個(gè)閾值去掉(太少,沒有代表性)Term的DF大于某個(gè)閾值也去掉(太多,沒有區(qū)分度)信息增益(InformationGain,IG):該term為整個(gè)分類所能提供的信息量(不考慮任何特征的熵和考慮該特征后的熵的差值)特征選擇(2)term的某種熵:該值越大,說明分布越均勻,越有可能出現(xiàn)在較多的類別中;該值越小,說明分布越傾斜,詞可能出現(xiàn)在較少的類別中相對(duì)熵(not交叉熵):也稱為KL距離(Kullback-Leiblerdivergence)

,反映了文本類別的概率分布和在出現(xiàn)了某個(gè)特定詞匯條件下的文本類別的概率分布之間的距離,該值越大,詞對(duì)文本類別分布的影響也大。特征選擇(3)χ2統(tǒng)計(jì)量(念xi):度量兩者(term和類別)獨(dú)立性的缺乏程度,χ2越大,獨(dú)立性越小,相關(guān)性越大(若AD<BC,則類和詞獨(dú)立,N=A+B+C+D)互信息(MutualInformation):MI越大t和c共現(xiàn)程度越大ABCDt~tc~c特征選擇方法的性能比較(1)特征選擇方法的性能比較(2)特征選擇方法的性能比較(3)YangYi-ming自動(dòng)文本分類方法Rocchio方法Na?veBayeskNN方法決策樹方法decisiontreeDecisionRuleClassifierTheWidrow-HoffClassifier神經(jīng)網(wǎng)絡(luò)方法NeuralNetworks支持向量機(jī)SVM基于投票的方法(votingmethod)Rocchio方法可以認(rèn)為類中心向量法是它的特例Rocchio公式分類類C中心向量的權(quán)重訓(xùn)練樣本中正例個(gè)數(shù)文檔向量的權(quán)重Na?veBayes參數(shù)計(jì)算Bayes公式?jīng)Q策樹方法構(gòu)造決策樹CARTC4.5(由ID3發(fā)展而來)CHAID決策樹的剪枝(pruning)DecisionRuleLearningwheat&formWHEATwheat&commodityWHEATbushels&exportWHEATwheat&agricultureWHEATwheat&tonnesWHEATwheat&winter&~softWHEAT(粗糙集)RoughSet邏輯表達(dá)式(AQ11算法)學(xué)習(xí)到如下規(guī)則支持向量機(jī)

SupportVectorMachineSupportVectorOptimalSeparatingHyperplane基于投票的方法Bagging方法訓(xùn)練R個(gè)分類器fi,分類器之間其他相同就是參數(shù)不同。其中fi是通過從訓(xùn)練集合中(N篇文檔)隨機(jī)取(取后放回)N次文檔構(gòu)成的訓(xùn)練集合訓(xùn)練得到的。對(duì)于新文檔d,用這R個(gè)分類器去分類,得到的最多的那個(gè)類別作為d的最終類別Boosting方法類似Bagging方法,但是訓(xùn)練是串行進(jìn)行的,第k個(gè)分類器訓(xùn)練時(shí)關(guān)注對(duì)前k-1分類器中錯(cuò)分的文檔,即不是隨機(jī)取,而是加大取這些文檔的概率AdaBoostAdaBoostMH文本分類的評(píng)估指標(biāo)分類方法的評(píng)估鄰接表每個(gè)類Precision=a/(a+b),Recall=a/(a+c),fallout=b/(b+d)=falsealarmrate,accuracy=(a+d)/(a+b+c+d),error=(b+c)/(a+b+c+d)=1-accuracy,missrate=1-recallF=(β2+1)p.r/(β2p+r)BreakEvenPoint,BEP,p=r的點(diǎn)如果多類排序輸出,采用interpolated11pointaverageprecision所有類:宏平均:對(duì)每個(gè)類求值,然后平均微平均:將所有文檔一塊兒計(jì)算,求值真正對(duì)的錯(cuò)誤標(biāo)YESab標(biāo)NOcd其他分類方法RegressionbasedonLeastSquaresFit(1991)NearestNeighborClassification(1992)*BayesianProbabilisticModels(1992)*SymbolicRuleInduction(1994)DecisionTree(1994)*NeuralNetworks(1995)Rocchioapproach(traditionalIR,1996)*SupportVectorMachines(1997)BoostingorBagging(1997)*HierarchicalLanguageModeling(1998)First-Order-LogicRuleInduction(1999)MaximumEntropy(1999)HiddenMarkovModels(1999)Error-CorrectingOutputCoding(1999)...參考文獻(xiàn)文獻(xiàn)及其他資源PapersK.AasandL.Eikvil.Textcategorisation:Asurvey.Technicalreport,NorwegianComputingCenter,June1999XiaomengSu,“Textcategorization”,LessonPresentationYimingYangandXinLiu.1999."Are-examinationoftextcategorizationmethods."22ndAnnualInternationalSIGIRASurveyonTextCategorization,NLPLab,KoreanU.龐劍峰,基于向量空間模型的自反饋的文本分類系統(tǒng)的研究與實(shí)現(xiàn),中科院計(jì)算所碩士論文,2001

黃萱菁等,獨(dú)立于語種的文本分類方法,中文信息學(xué)報(bào),2000年第6期Software:RainbowBoosTexterTiMBLC4.5Corpus

謝謝!Wangbin@7>3@N)J&G#CWySuOrhnd 9;5<2=M(I$EYBVxRtjpfmc8.4`0-L*H!DXzTvQsioeka:7>3@N)J%F#CWySuOqhnd 9;5~1=M(I$EYAUxRtjpflb8.4`0-K&H!DXzTvPsioeka:6<3@N)J%FZBWySuOqgmd 9;5~1+L(I$EYAUwRtjpflb^7.4`0-K&G#DXzTvPrhoeka:6<2=N)J%FZBVySuOqgmc9;5~1+L*H$EYAUwQsjpflb^7>3`0-K&G#CXzTvPrhndka:6<2=M(J%FZBVxRuOqgmc8.5~1+L*H!EYAUwQsioflb^7>3@N-K&G#CWyTvPrhnd 9:6<2=M(I%FZBVxRtjqgmc8.4`1+L*H!DXAUwQsioekb^7>3@N)K&G#CWySuPrhnd 9;5<2=M(I$EZBVxRtjpfmc8.4`0+L*H!DXzTwQsioeka:7>3@N)J%G#CWySuOqhnd 9;5~2=M(I$EYAVxRtjpflb8.4`0-K*H!DXzTvPsioeka:6>3@N)J%FZCWySuOqgmd 9;5~1+M(I$EYAUwRtjpflb^8.4`0-K&G!DXzTvPrhoeka:6<2@N)J%FZBVySuOqgmc 9;5~1+L*I$EYAUwQsjpflb^7>4`0-K&G#CXzTvPrhneka:6<2=M)J%FZBVxRuOqgmc8;5~1+L*H!EYAUwQsipflb^7>3@0-K&G#CWyTvPrhnd a:6<2=M(I%FZBVxRtOqgmc8.4~1+L*H!DXAUwQsioelb^7>3@N)K&G#CWySvPrhnd 9;6<2=M(I$EZBVxRtjpgmc8.4`0+L*H!DXzUwQsioeka^7>3@N)J%G#CWySuOrhnd 9;5~2=M(I$EYBVxRtjpflc8.4`0-K*H!DXzTvQsioeka:6>3@N)J%F#CWySuOqgnd 9;5~1+M(I$EYAUxRtjpflb^8.4`0-K&H!DXzTvPrioeka:6<2@N)J%FZBWySuOqgmc 9;5~1+L(I$EYAUwQtjpflb^7>4`0-K&G#DXzTvPrhneka:6<2=N)J%FZBVxSuOqgmc8;5~1+L*H$EYAUwQsipflb^7>3`0-K&G#CWzTvPrhnd a:6<2=M(J%FZBVxRtOqgmc8.4~1+L*H!DYAUwQsioelb^7>3@N-K&G#CWySvPrhnd 9;6<2=M(I$FZBVxRtjpgmc8.4`1+L*H!DXzUwQhoeka:6<2@N)J%FZBVySuOqgmc9;5~1+L*I$EYAUwQsjpflb^7>4`0-K&G#CXzTvPrhndka:6<2=M)J%FZBVxRuOqgmc8;5~1+L*H!EYAUwQsioflb^7>3@0-K&G#CWyTvPrhnd a:6<2=M(I%FZBVxRtjqgmc8.4~1+L*H!DXAUwQsioelb^7>3@N)K&G#CWySuPrhnd 9;6<2=M(I$EZBVxRtjpgmc8.4`0+L*H!DXzTwQsioeka^7>3@N)J%G#CWySuOrhnd 9;5~2=M(I$EYAVxRtjpflc8.4`0-K*H!DXzTvQsioeka:6>3@N)J%FZCWySuOqgnd 9;5~1+M(I$EYAUxRtjpflb^8.4`0-K&G!DXzTvPrioeka:6<2@N)J%FZBWySuOqgmc 9;5~1+L*I$EYAUwQtjpflb^7>4`0-K&G#DXzTvPrhneka:6<2=M)J%FZBVxSuOqgmc8;5~1+L*H$EYAUwQsipflb^7>3@0-K&G#CWzTvPrhnd a:6<2=M(J%FZBVxRtOqgmc8.4~1+L*H!DYAUwQsioelb^7>3@N-K&G#CWySvPrhnd 9;6<2=M(I$FZBVxRtjpgmc8.4`1+L*H!DXzUwQsioeka^7>3@N)J&G#CWySuOrhnd 9;5<2=M(I$EYBVxRtjpflc8.4`0-L*H!DXzTvQsioeka:7>3@N)J%F#CWySuOqgnd 9;5~1=M(I$EYAUxRtjpflb8.4`0-K&H!DXzTvPrioeka:6<3@N)J%FZBWySuOqgmd 9;5~1+L(I$EYAUwQtjpflb^7.4`0-K&G#DXzTvPrhoeka:6<2=N)J%FZBVxSuOqgmc9;5~1+L*H$EYAUwQsjpflb^7>3`0-K&G#CWzTvPrhndka:6<2=M(J%FZBVxRuOqgmc8.5~1+L*H!DYAUwQsioflb^7>3@N-K&G#CWyTvPrhnd 9:6<2=M(I$FZBVxRtjqgmc8.4`1+L*H!DXAUwQsioek6<2@N)J%FZBWySuOqgmc 9;5~1+L*I$EYAUwQtjpflb^7>4`0-K&G#DXzTvPrhneka:6<2=M)J%FZBVxSuOqgmc8;5~1+L*H$EYAUwQsipflb^7>3@0-K&G#CWzTvPrhnd a:6<2=M(J%FZBVxRtOqgmc8.4~1+L*H!DYAUwQsioelb^7>3@N-K&G#CWySvPrhnd 9;6<2=M(I$FZBVxRtjpgmc8.4`1+L*H!DXzUwQsioeka^7>3@N)J&G#CWySuOrhnd 9;5<2=M(I$EYBVxRtjpflc8.4`0-L*H!DXzTvQsioeka:6>3@N)J%F#CWySuOqgnd 9;5~1=M(I$EYAUxRtjpflb^8.4`0-K&H!DXzTvPrioeka:6<3@N)J%FZBWySuOqgmc 9;5~1+L(I$EYAUwQtjpflb^7.4`0-K&G#DXzTvPrhneka:6<2=N)J%FZBVxSuOqgmc9;5~1+L*H$EYAUwQsipflb^7>3`0-K&G#CWzTvPrhndka:6<2=M(J%FZBVxRtOqgmc8.5~1+L*H!DYAUwQsioflb^7>3@N-K&G#CWySvPrhnd 9:6<2=M(I$FZBVxRtjqgmc8.4`1+L*H!DXzUwQsioekb^7>3@N)J&G#CWySuPrhnd 9;5<2=M(I$EYBVxRtjpfmc8.4`0-L*H!DXzTwQsioeka:7>3@N)J%F#CWySuOqhnd 9;5~1=M(I$EYAVxRtjpflb8.4`0-K&H!DXzTvPsid a:6<2=M(I%FZBVxRtOqgmc8.4~1+L*H!DYAUwQsioelb^7>3@N)K&G#CWySvPrhnd 9;6<2=M(I$FZBVxRtjpgmc8.4`0+L*H!DXzUwQsioeka^7>3@N)J&G#CWySuOrhnd 9;5~2=M(I$EYBVxRtjpflc8.4`0-L*H!DXzTvQsioeka:6>3@N)J%F#CWySuOqgnd 9;5~1=M(I$EYAUxRtjpflb^8.4`0-K&H!DXzTvPrioeka:6<3@N)J%FZBWySuOqgmc 9;5~1+L(I$EYAUwQtjpflb^7.4`0-K&G#DXzTvPrhneka:6<2=N)J%FZBVxSuOqgmc9;5~1+L*H$EYAUwQsipflb^7>3`0-K&G#CWzTvPrhndka:6<2=M(J%FZBVxRtOqgmc8.5~1+L*H!DYAUwQsioflb^7>3@N-K&G#CWySvPrhnd 9:6<2=M(I$FZBVxRtjqgmc8.4`1+L*H!DXzUwQsioekb^7>3@N)J&G#CWySuPrhnd 9;5<2=M(I$EYBVxRtjpfmc8.4`0-L*H!DXzTwQsioeka:7>3@N)J%F#CWySuOqhnd 9;5~1=M(I$EYAVxRtjpb^7>3@0-K&G#CWzTvPrhnd a:6<2=M(I%FZBVxRtOqgmc8.4~1+L*H!DYAUwQsioelb^7>3@N)K&G#CWySvPrhnd 9;6<2=M(I$FZBVxRtjpgmc8.4`0+L*H!DXzUwQsioeka^7>3@N)J&G#CWySuOrhnd 9;5~2=M(I$EYBVxRtjpflc8.4`0-L*H!DXzTvQsioeka:6>3@N)J%F#CWySuOqgnd 9;5~1=M(I$EYAUxRtjpflb^8.4`0-K&H!DXzTvPrioeka:6<3@N)J%FZBWySuOqgmc 9;5~1+L(I$EYAUwQtjpflb^7.4`0-K&G#DXzTvPrhneka:6<2=N)J%FZBVxSuOqgmc8;5~1+L*H$EYAUwQsipflb^7>3`0-K&G#CWzTvPrhnd a:6<2=M(J%FZBVxRtOqgmc8.5~1+L*H!DYAUwQsioelb^7>3@N-K&G#CWySvPrhnd 9:6<2=M(I$FZBVxRtjpgmc8.4`1+L*H!DXzUwQsioekb^7>3@N)J&G#CWySuOrhnd 9;5<2=M(I$EYBVxRtjpfmc8.4`0-L*H!DXzTvQsieka:6<2=M)J%FZBVxRuOqgmc8;5~1+L*H!EYAUwQsipflb^7>3@0-K&G#CWyTvPrhnd a:6<2=M(I%FZBVxRtOqgmc8.4~1+L*H!DXAUwQsioelb^7>3@N)K&G#CWySvPrhnd 9;6<2=M(I$EZBVxRtjpgmc8.4`0+L*H!DXzUwQsioeka^7>3@N)J%G#CWySuOrhnd 9;5~2=M(I$EYBVxRtjpflc8.4`0-K*H!DXzTvQsioeka:6>3@N)J%F#CWySuOqgnd 9;5~1+M(I$EYAUxRtjpflb^8.4`0-K&H!DXzTvPrioeka:6<2@N)J%FZBWySuOqgmc 9;5~1+L(I$EYAUwQtjpflb^7>4`0-K&G#DXzTvPrhneka:6<2=N)J%FZBVxSuOqgmc8;5~1+L*H$EYAUwQsipflb^7>3`0-K&G#CWzTvPrhnd a:6<2=M(J%FZBVxRtOqgmc8.5~1+L*H!DYAUwQsioelb^7>3@N-K&G#CWySvPrhnd 9:6<2=M(I$FZBVxRtjpgmc8.4`1+L*H!DXzUwQsioekb^7>3@N)J&G#CWySuOrhnd 9;5<2=M(I$EYBVxRtflb^7>4`0-K&G#CXzTvPrhneka:6<2=M)J%FZBVxRuOqgmc8;5~1+L*H!EYAUwQsipflb^7>3@0-K&G#CWyTvPrhnd a:6<2=M(I%FZBVxRtOqgmc8.4~1+L*H!DXAUwQsioelb^7>3@N)K&G#CWySvPrhnd 9;6<2=M(I$EZBVxRtjpgmc8.4`0+L*H!DXzUwQsioeka^7>3@N)J%G#CWySuOrhnd 9;5~2=M(I$EYBVxRtjpflc8.4`0-K*H!DXzTvQsioeka:6>3@N)J%F#CWySuOqgnd 9;5~1+M(I$EYAUxRtjpflb^8.4`0-K&H!DXzTvPrioeka:6<2@N)J%FZBWySuOqgmc 9;5~1+L(I$EYAUwQtjpflb^7>4`0-K&G#DXzTvPrhneka:6<2=N)J%FZBVxSuOqgmc8;50-L*H!DXzTwQsioeka:7>3@N)J%G#CWySuOqhnd 9;5~1=M(I$EYAVxRtjpflb8.4`0-K*H!DXzTvPsioeka:6<3@N)J%FZCWySuOqgmd 9;5~1+M(I$EYAUwRtjpflb^7.4`0-K&G!DXzTvPrhoeka:6<2@N)J%FZBVySuOqgmc9;5~1+L*I$EYAUwQsjpflb^7>4`0-K&G#CXzTvPrhndka:6<2=M)J%FZBVxRuOqgmc8;5~1+L*H!EYAUwQsioflb^7>3@0-K&G#CWyTvPrhnd a:6<2=M(I%FZBVxRtjqgmc8.4~1+L*H!DXAUwQsioelb^7>3@N)K&G#CWySuPrhnd 9;6<2=M(I$EZBVxRtjpgmc8.4`0+L*H!DXzTwQsioeka^7>3@N)J%G#CWySuOrhnd 9;5~2=M(I$EYAVxRtjpflc8.4`0-K*H!DXzTvQsioeka:6>3@N)J%FZCWySuOqgnd 9;5~1+M(I$EYAUsioflb^7>3@N-K&G#CWyTvPrhnd 9:6<2=M(I$FZBVxRtjqgmc8.4`1+L*H!DXAUwQsioekb^7>3@N)J&G#CWySuPrhnd 9;5<2=M(I$EZBVxRtjpfmc8.4`0-L*H!DXzTwQsioeka:7>3@N)J%G#CWySuOqhnd 9;5~1=M(I$EYAVxRtjpflb8.4`0-K*H!DXzTvPsioeka:6<3@N)J%FZCWySuOqgmd 9;5~1+M(I$EYAUwRtjpflb^7.4`0-K&G!DXzTvPrhoeka:6<2@N)J%FZBVySuOqgmc9;5~1+L*I$EYAUwQsjpflb^7>4`0-K&G#CXzTvPrhndka:6<2=M)J%FZBVxRuOqgmc8;5~1+L*H!EYAUwQsioflb^7>3@0-K&G#CWyTvPrhnd a:6<2=M(I%FZBVxRtjqgmc8.4~1+&H!DXzTvPrioeka:6<3@N)J%FZBWySuOqgmc 9;5~1+L(I$EYAUwQtjpflb^7.4`0-K&G#DXzTvPrhneka:6<2=N)J%FZBVxSuOqgmc9;5~1+L*H$EYAUwQsipflb^7>3`0-K&G#CWzTvPrhndka:6<2=M(J%FZBVxRtOqgmc8.5~1+L*H!DYAUwQsioflb^7>3@N-K&G#CWySvPrhnd 9:6<2=M(I$FZBVxRtjqgmc8.4`1+L*H!DXzUwQsioekb^7>3@N)J&G#CWySuPrhnd 9;5<2=M(I$EYBVxRtjpfmc8.4`0-L*H!DXzTwQsioeka:7>3@N)J%F#CWySuOqhnd 9;5~1=M(I$EYAVxRtjpflb8.4-K&G#CWzTvPrhnd a:6<2=M(I%FZBVxRtOqgmc8.4~1+L*H!DYAUwQsioelb^7>3@N)K&G#CWySvPrhnd 9;6<2=M(I$FZBVxRtjpgmc8.4`0+L*H!DXzUwQsioeka^7>3@N)J&G#CWySuOrhnd 9;5~2=M(I$EYBVxRtjpflc8.4`0-L*H!DXzTvQsioeka:6>3@N)J%F#CWySuOqgnd 9;5~1=M(I$EYAUxRtjpflb^8.4`0-K&H!DXzTvPrioeka:6<3@N)J%FZBWySuOqgmc 9;5~1+L(I$EYAUwQtjpflb^7.4`0-K&G#DXzTvPrhneka:6<2=N)J%FZBVxSuOqgmc9;5~1+L*H$EYAUwQsipflb^7>3`0-K&G#CWzTvPrhndka:6<2=M(J%FZBVxRtOqgmc8.0-K*H!DXzTvPsioeka:6>3@N)J%FZCWySuOqgmd 9;5~1+M(I$EYAUwRtjpflb^8.4`0-K&G!DXzTvPrhoeka:6<2@N)J%FZBVySuOqgmc 9;5~1+L*I$EYAUwQsjpflb^7>4`0-K&G#CXzTvPrhneka:6<2=M)J%FZBVxRuOqgmc8;5~1+L*H!EYAUwQsipflb^7>3@0-K&G#CWyTvPrhnd a:6<2=M(I%FZBVxRtOqgmc8.4~1+L*H!DXAUwQsioelb^7>3@N)K&G#CWySvPrhnd 9;6<2=M(I$EZBVxRtjpgmc8.4`0+L*H!DXzUwQsioeka^7>3@N)J%G#CWySuOrhnd 9;5~2=M(I$EYBVxRtjpflc8.4`0-K*H!DXzTvQsioeka:6>3@N)J%F#VxRuOqgmc8.5~1+L*H!EYAUwQsioflb^7>3@N-K&G#CWyTvPrhnd 9:6<2=M(I%FZBVxRtjqgmc8.4`1+L*H!DXAUwQsioekb^7>3@N)K&G#CWySuPrhnd 9;5<2=M(I$EZBVxRtjpfmc8.4`0+L*H!DXzTwQsioeka:7>3@N)J%G#CWySuOqhnd 9;5~2=M(I$EYAVxRtjpflb8.4`0-K*H!DXzTvPsioeka:6>3@N)J%FZCWySuOqgmd 9;5~1+M(I$EYAUwRtjpflb^8.4`0-K&G!DXzTvPrhoeka:6<2@N)J%FZBVySuOqgmc 9;5~1+L*I$EYAUwQsjpflb^7>4`0-G#CWySuOrhnd 9;5<2=M(I$EYBVxRtjpfmc8.4`0-L*H!DXzTvQsioeka:7>3@N)J%F#CWySuOqhnd 9;5~1=M(I$EYAUxRtjpflb8.4`0-K&H!DXzTvPsioeka:6<3@N)J%FZBWySuOqgmd 9;5~1+L(I$EYAUwRtjpflb^7.4`0-K&G#DXzTvPrhoeka:6<2=N)J%FZBVySuOqgmc9;5~1+L*H$EYAUwQsjpflb^7>3`0-K&G#CXzTvPrhndka:6<2=M(J%FZBVxRuOqgmc8.5~1+L*H!EYAUwQsioflb^7>3@N-K&G#CWSuOqgnd 9;5~1+M(I$EYAUxRtjpflb^8.4`0-K&G!DXzTvPrioeka:6<2@N)J%FZBWySuOqgmc 9;5~1+L*I$EYAUwQtjpflb^7>4`0-K&G#DXzTvPrhneka:6<2=M)J%FZBVxSuOqgmc8;5~1+L*H$EYAUwQsipflb^7>3@0-K&G#CWzTvPrhnd a:6<2=M(J%FZBVxRtOqgmc8.4~1+L*H!DYAUwQsioelb^7>3@N-K&G#CWySvPrhnd 9;6<2=M(I$FZBVxRtjpgmc8.4`1+L*H!DXzUwQsioeka^7>3@N)J&G#CWySuOrhnd 9;5<2=M(IYAUwQsjpflb^7>4`0-K&G#CXzTvPrhndka:6<2=M)J%FZBVxRuOqgmc8;5~1+L*H!EYAUwQsioflb^7>3@0-K&G#CWyTvPrhnd a:6<2=M(I%FZBVxRtjqgmc8.4~1+L*H!DXAUwQsioelb^7>3@N)K&G#CWySuPrhnd 9;6<2=M(I$EZBVxRtjpgmc8.4`0+L*H!DXzTwQsioeka^7>=N)J%FZBVxSuOqgmc9;5~1+L*H$EYAUwQsipflb^7>3`0-K&G#CWzTvPrhndka:6<2=M(J%FZBVxRtOqgmc8.5~1+L*H!DYAUwQsioflb^7

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論