2021年上海市寶山區(qū)中考數(shù)學(xué)三模試卷_第1頁
2021年上海市寶山區(qū)中考數(shù)學(xué)三模試卷_第2頁
2021年上海市寶山區(qū)中考數(shù)學(xué)三模試卷_第3頁
2021年上海市寶山區(qū)中考數(shù)學(xué)三模試卷_第4頁
2021年上海市寶山區(qū)中考數(shù)學(xué)三模試卷_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021年上海市寶山區(qū)中考數(shù)學(xué)三模試卷

一、選擇題:(本大題共6題,每題4分,滿分24分)[下列各題的四個選項中,有且只有

一個選項是正確的,請選擇正確選項的代號并填涂在答題紙的相應(yīng)位置上]

1.(4分)下列計算正確的是()

A.(2a)2=2.2B.a6-i-a3=a3

C.D.3a2+2a3=5a56

2.(4分)下列方程有實數(shù)根的是()

=-

A.%B.Vx-12C.x2-x+1=0D.2J?+X-1=0

x-1

3.(4分)如果函數(shù)y=3x+"的圖象一定經(jīng)過第二象限,那么根的取值范圍是()

A.,〃>0B.巾》0C.m<0D.mWO

4.(4分)如圖,反映的是某中學(xué)九(1)班學(xué)生外出乘車、步行、騎車人數(shù)的扇形分布圖,

其中乘車的學(xué)生有20人,騎車的學(xué)生有12人,那么下列說法正確的是()

A.九(1)班外出的學(xué)生共有42人

B.九(1)班外出步行的學(xué)生有8人

C.在扇形圖中,步行學(xué)生人數(shù)所占的圓心角的度數(shù)為82°

D.如果該中學(xué)九年級外出的學(xué)生共有500人,那么估計全年級外出騎車的學(xué)生約有140

5.(4分)一個正多邊形繞它的中心旋轉(zhuǎn)45°后,就與原正多邊形第一次重合,那么這個正

多邊形()

A.是軸對稱圖形,但不是中心對稱圖形

B.是中心對稱圖形,但不是軸對稱圖形

C.既是軸對稱圖形,又是中心對稱圖形

D.既不是軸對稱圖形,也不是中心對稱圖形

6.(4分)下列命題中正確的是()

A.對角線相等的梯形是等腰梯形

B.有兩個角相等的梯形是等腰梯形

C.一組對邊平行的四邊形一定是梯形

D.一組對邊平行,另一組對邊相等的四邊形一定是等腰梯形

二、填空題:(本大題共12題,每題4分,滿分48分)

1_

7.(4分)計算:鏟=.

8.(4分)在實數(shù)范圍內(nèi)分解因式:/-9/=

9.(4分)化簡:工-1_=.

xx+1

10.(4分)函數(shù)yf/4-2x的定義域是.

k

11.(4分)已知:反比例函數(shù)yq的圖象經(jīng)過點A(2,-3),那么%=

12.(4分)將一次函數(shù)y=1+3的圖象沿著y軸向下平移5個單位,那么平移后所得圖象

2

的函數(shù)解析式為_____________________

13.(4分)一布袋里裝有4個紅球、5個黃球、6個黑球,這些球除顏色外其余都相同,那

么從這個布袋里摸出一個黃球的概率為.

14.(4分)如果一組數(shù)a,2,4,0,5的中位數(shù)是4,那么a可以是(只

需寫出一個滿足要求的數(shù)).

15.(4分)已知:在平行四邊形ABCD中,設(shè)標=Z,AD=b>那么以=

(用向量:、E的式子表示).

16.(4分)在四邊形ABCD中,B/)是對角線,NABD=NCDB,要使四邊形ABC。是平行

四邊形只須添加一個條件,這個條件可以是(只需寫出一種情況).

17.(4分)某中學(xué)組織九年級學(xué)生春游,有m名師生租用45座的大客車若干輛,共有2

個空座位,那么租用大客車的輛數(shù)是(用m的代數(shù)式表示).

18.(4分)在為△ABC中,NC=90°,AC=3,以點A為圓心,1為半徑作。4,將

繞著點C順時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為a(0<a<90°),若與直線BC相切,則/a的

余弦值為.

三、解答題:(本大題共7題,滿分78分)

19.(10分)先化簡,再求值:.與2,其中x=2+?.

J

x+2x-2X2+2X

20.(10分)解方程組:[3x2-y2_y+3=o①.

.2x-y=l②

21.(10分)如圖,在梯形A8C£>中,AD//BC,AB=C£>=5,對角線BO平分乙48C,cosC

=匡

5"

(1)求邊BC的長:

(2)過點A作AELBD,垂足為點E,求cotZDAE的值.

22.(10分)某賓館有客房200間供游客居住,當每間客房的定價為每天180元時,客房恰

好全部住滿;如果每間客房每天的定價每增加10元,就會減少4間客房出租.設(shè)每間客

房每天的定價增加x元,賓館出租的客房為y間.求:

(1)y關(guān)于x的函數(shù)關(guān)系式;

(2)如果某天賓館客房收入38400元,那么這天每間客房的價格是多少元?

23.(12分)如圖,己知在△4BC中,N8AC=90°,AB=AC,點。在邊BC上,以AO

為邊作正方形AOER聯(lián)結(jié)CF,CE.

(1)求證:FC1BC;

24.(12分)如圖,在直角坐標平面xOy內(nèi),點4在x軸的正半軸上,點8在第一象限內(nèi),

且NOAB=90°,ZBOA=30°,OB—4.二次函數(shù)y=-7+bx的圖象經(jīng)過點4,頂點

為點C.

(1)求這個二次函數(shù)的解析式,并寫出頂點C的坐標;

(2)設(shè)這個二次函數(shù)圖象的對稱軸/與OB相交于點。,與x軸相交于點E,求理的值;

DC

(3)設(shè)尸是這個二次函數(shù)圖象的對稱軸I上一點,如果△POA的面積與aOCE的面積

相等,求點P的坐標.

25.(14分)已知:如圖,△A8C為等邊三角形,AB=AH1BC,垂足為點H,點。

在線段HC上,且"0=2,點P為射線A”上任意一點,以點尸為圓心,線段PD的長

(1)當x=3時,求0P的半徑長;

(2)如圖1,如果0P與線段AB相交于£、尸兩點,且E/=y,求y關(guān)于x的函數(shù)解析

式,并寫出它的定義域;

(3)如果與相似,求x的值(直接寫出答案即可).

2021年上海市寶山區(qū)中考數(shù)學(xué)三模試卷

參考答案與試題解析

一、選擇題:(本大題共6題,每題4分,滿分24分)[下列各題的四個選項中,有且只有

一個選項是正確的,請選擇正確選項的代號并填涂在答題紙的相應(yīng)位置上]

1.(4分)下列計算正確的是()

A.(2a)z=2aB.=

D.3a2+2a3—5a5

【分析】根據(jù)同底數(shù)塞的除法,底數(shù)不變指數(shù)相減;合并同類項,系數(shù)相加字母和字母

的指數(shù)不變;同底數(shù)嘉的乘法,底數(shù)不變指數(shù)相加;塞的乘方,底數(shù)不變指數(shù)相乘,對

各選項計算后利用排除法求解.

【解答】解:4(2a)2=4/,故本選項錯誤.

B、a6-rt?3=a3,故本選項正確.

C、a3,a2—a5,故本選項錯誤.

。、3/與2a3,不能合并同類項故本選項錯誤.

故選:B.

【點評】本題考查同底數(shù)基的除法,合并同類項,同底數(shù)基的乘法,募的乘方很容易混

淆,一定要記準法則才能做題.

2.(4分)下列方程有實數(shù)根的是()

2

A.x+2力B.A/X<=-2C.x2-x+l=0D.2?+x-1=0

x-1

【分析】根據(jù)分式方程和無理方程的解法如果能求得方程的解說明方程有實數(shù)解,一元

二次方程有實數(shù)根只需得到其根的判別式為非負數(shù).

【解答】解:4、分式方程&J2=o,

去分母得:/+2=0

原方程無解;

B、

,無理方程無解;

C、Vx2-x+1=0中必-4ac=1-4=-3<0

.../-x+l=O無實數(shù)根;

。、:廿+苫-1=0中.-4ac=l+8=9>0,

二此方程有實數(shù)根,

故選:D.

【點評】本題考查了根的判別式,當4>0時,方程有兩個不相等的實數(shù)根;當△=()時

方程有兩個相等的實數(shù)根;當△<()時,方程無實數(shù)根.

3.(4分)如果函數(shù)的圖象一定經(jīng)過第二象限,那么,〃的取值范圍是()

A.w>0B.機20C.m<0D,機<0

【分析】圖象一定經(jīng)過第二象限,則函數(shù)一定與y軸的正半軸相交,因而〃?>0.

【解答】解:根據(jù)題意得:,〃>0,

故選:A.

【點評】本題主要考查了一次函數(shù)的性質(zhì),結(jié)合坐標系以及函數(shù)的圖象理解函數(shù)的性質(zhì)

是關(guān)鍵.

4.(4分)如圖,反映的是某中學(xué)九(1)班學(xué)生外出乘車、步行、騎車人數(shù)的扇形分布圖,

其中乘車的學(xué)生有20人,騎車的學(xué)生有12人,那么下列說法正確的是()

A.九(1)班外出的學(xué)生共有42人

B.九(1)班外出步行的學(xué)生有8人

C.在扇形圖中,步行學(xué)生人數(shù)所占的圓心角的度數(shù)為82°

D.如果該中學(xué)九年級外出的學(xué)生共有500人,那么估計全年級外出騎車的學(xué)生約有140

【分析】先求出九(1)班的總?cè)藬?shù),再求出步行的人數(shù),進而求出步行人數(shù)所占的圓心

角度數(shù),最后即可作出判斷.

【解答】解:由扇形圖知乘車的人數(shù)是20人,占總?cè)藬?shù)的50%,所以九(1)班有20?

50%=40人,

所以騎車的占124-40=30%,步行人數(shù)=40-12-20=8人,

所占的圓心角度數(shù)為360°X20%=72°,

如果該中學(xué)九年級外出的學(xué)生共有500人,那么估計全年級外出騎車的學(xué)生約有150人.

故選:B.

【點評】本題主要考查扇形統(tǒng)計圖及用樣本估計總體等知識.統(tǒng)計的思想就是用樣本的

信息來估計總體的信息,本題體現(xiàn)了統(tǒng)計思想,考查了用樣本估計總體的知識.

5.(4分)一個正多邊形繞它的中心旋轉(zhuǎn)45°后,就與原正多邊形第一次重合,那么這個正

多邊形()

A.是軸對稱圖形,但不是中心對稱圖形

B.是中心對稱圖形,但不是軸對稱圖形

C.既是軸對稱圖形,又是中心對稱圖形

D.既不是軸對稱圖形,也不是中心對稱圖形

【分析】先根據(jù)旋轉(zhuǎn)對稱圖形的定義得出這個正多邊形是正八邊形、再根據(jù)軸對稱圖形

和中心對稱圖形的定義即可解答.

【解答】解:???一個正多邊形繞著它的中心旋轉(zhuǎn)45°后,能與原正多邊形重合,

3600+45°=8,

這個正多邊形是正八邊形.

正八邊形既是軸對稱圖形,又是中心對稱圖形.

故選:C.

【點評】本題綜合考查了旋轉(zhuǎn)對稱圖形的概念,中心對稱圖形和軸對稱圖形的定義.根

據(jù)定義,得一個正〃邊形只要旋轉(zhuǎn)簿二的倍數(shù)角即可.奇數(shù)邊的正多邊形只是軸對稱

n

圖形,偶數(shù)邊的正多邊形既是軸對稱圖形,又是中心對稱圖形.

6.(4分)下列命題中正確的是()

A.對角線相等的梯形是等腰梯形

B.有兩個角相等的梯形是等腰梯形

C.一組對邊平行的四邊形一定是梯形

D.一組對邊平行,另一組對邊相等的四邊形一定是等腰梯形

【分析】根據(jù)等腰梯形的判定定理對各個選項逐一分析即可.

【解答】解:A、對角線相等的梯形是等腰梯形,由全等三角形的判定與性質(zhì)可證明出是

等腰梯形,故本選項正確;

8、有兩個角相等的梯形是等腰梯形,根據(jù)等腰梯形的性質(zhì)和判定可判斷:直角梯形中有

兩個角相等為90度,但不是等腰梯形,故本選項錯誤;

C、一組對邊平行的四邊形一定是梯形,錯誤,因為沒說明另一組對邊的關(guān)系,有可能也

平行,那么就有可能是平行四邊形,故本選項錯誤;

。、一組對邊平行,另一組對邊相等則有兩種情況,即平行四邊形或等腰梯形,所以不能

說一定是等腰梯形.

故本選項錯誤;

故選:A.

【點評】此題主要考查學(xué)生對等腰梯形的判定這一知識點的理解和掌握,此題難度不大,

屬于基礎(chǔ)題,學(xué)生應(yīng)熟練掌握才行.

二、填空題:(本大題共12題,每題4分,滿分48分)

_1_

7.(4分)計算:3.

【分析】95=?,即是求9的算術(shù)平方根.

【解答】解:根據(jù)題意:j=后=3.

故答案為:3.

【點評】本題考查算術(shù)平方根的知識,屬于基礎(chǔ)題,注意掌握算術(shù)平方根F是非負數(shù),

是??嫉囊粋€知識點.

8.(4分)在實數(shù)范圍內(nèi)分解因式:"-9/=/益9).

【分析】按照因式分解的定義,提取公因式即可求解.

【解答】解:/一(”一9).

故答案為:a2(a-9).

【點評】本題考查的是實數(shù)范圍內(nèi)分解因式,通常按照因式分解的定義,提取公因式即

可.

9.(4分)化簡:工-」^=—1—.

XVXx+1-X2+工x—

【分析】根據(jù)分式加減的運算法則,將分式通分、化簡即可.

【解答】解:原式=,x+lX

X(x+1)x(x+l)

—x+l-x

x(x+l)

=1

x(x+l)

=1

x+x

【點評】本題考查了分式的加減運算.解決本題首先應(yīng)通分,最后要注意將結(jié)果化為最

簡分式.

10.(4分)函數(shù)Yf/4-7丫的定義域是XW2.

【分析】根據(jù)二次根式的意義,被開方數(shù)是非負數(shù)可:4-2x)0,求解即可.

【解答】解:根據(jù)題意得:4-2x20,

解得xW2.

故答案為xW2.

【點評】本題考查了函數(shù)自變量取值范圍的求法.要使得本題函數(shù)式子有意義,必須滿

足被開方數(shù)非負.

11.(4分)已知:反比例函數(shù)k的圖象經(jīng)過點A(2,-3),那么k=-6

yq

【分析】根據(jù)反比例函數(shù)圖象上點的坐標特征,將點4(2,-3)代入反比例函數(shù)

x

然后解關(guān)于A的方程即可.

【解答】解:根據(jù)題意,得

-3=工

2

解得,k=-6.

故答案是:~6.

【點評】本題主要考查了待定系數(shù)法求反比例函數(shù)解析式.解題時,借用了反比例函數(shù)

圖象上點的坐標特征(經(jīng)過函數(shù)的某點一定在函數(shù)的圖象上)這一知識點.

12.(4分)將一次函數(shù)y=L+3的圖象沿著y軸向下平移5個單位,那么平移后所得圖象

2

的函數(shù)解析式為y=L-2.

2

【分析】根據(jù)“上加下減,左加右減”的原則進行解答即可.

【解答】解:將一次函數(shù)y=L+3的圖象沿著y軸向下平移5個單位所得函數(shù)解析式為:

2

y=Xx+3-5,

*2

即y=L-2.

2

故答案為:y=lx-2.

2

【點評】本題考查的是一次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此

題的關(guān)鍵.

13.(4分)一布袋里裝有4個紅球、5個黃球、6個黑球,這些球除顏色外其余都相同,那

么從這個布袋里摸出一個黃球的概率為

-3-

【分析】由于每個球被摸到的機會是均等的,故可用概率公式解答.

【解答】解:???布袋里裝有4個紅球、5個黃球、6個黑球,

:.P(摸到黃球)=—J=上.

4+5+63

故答案為:1.

3

【點評】此題考查了概率公式,要明確:如果在全部可能出現(xiàn)的基本事件范圍內(nèi)構(gòu)成事

件A的基本事件有“個,不構(gòu)成事件4的事件有〃個,則出現(xiàn)事件A的概率為:尸(4)

_a

a+b

14.(4分)如果一組數(shù)小2,4,0,5的中位數(shù)是4,那么“可以是4(所填答案滿足。

-4即可)(只需寫出一個滿足要求的數(shù)).

【分析】由于一共5個數(shù),4一定排在第3個才能是中位數(shù),所以??梢栽诘?個或第5

個,從而確定。的取值即可.

【解答】解:?.?這組數(shù)據(jù)有5個數(shù),且中位數(shù)是4,

/.4必須在5個數(shù)從小到大排列的正中間,

即這組數(shù)據(jù)的重新排列是0,2,4,a,5或0,2,4,5,a,

...a24或a25,

故答案是4(答案不唯一).

【點評】本題考查了中位數(shù)的意義.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦?/p>

排列后,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).

15.(4分)己知:在平行四邊形ABC。中,設(shè)族=之,AD^b>那么而=_二(用

向量a、b的式子表示).

【分析】由在平行四邊形ABC。中,可得BC=AD=b,即可得BA=-a,CB=-b>又

由忌=溫+忌,即可求得答案.

【解答】解:???四邊形A8CZ)是平行四邊形,

J.AD//BC,AD=BC,

1?BC=AD=b>

vAB=a.

*,.BA="a,CB=-b,

CA=CB+BA—_b_a.

故答案為:-b-a.

【點評】此題考查了平面向量的知識與平行四邊形的性質(zhì).此題難度不大,注意數(shù)形結(jié)

合思想的應(yīng)用.

16.(4分)在四邊形ABCQ中,8。是對角線,NABD=NCDB,要使四邊形ABCD是平行

四邊形只須添加一個條件,這個條件可以是AB=CD或區(qū)Z)〃BC(只需寫出一種情

況).

【分析】用反推法,如果四邊形ABCD是平行四邊形,會推出什么結(jié)論,那么這些結(jié)論

就是我們要添加的條件.

【解答】解:...ABaCD,要使四邊形ABCD是平行四邊形,可添

AB=CD,根據(jù)一組對邊平行且相等的四邊形是平行四邊形,可使四邊形ABCO是平行四

邊形;或添AD//BC,根據(jù)由兩組對邊分別平行的四邊形是平行四邊形,可使四邊形ABCD

是平行四邊形.

【點評】解答此類題的關(guān)鍵是要突破思維定勢的障礙,運用發(fā)散思維,多方思考,探究

問題在不同條件下的不同結(jié)論,挖掘它的內(nèi)在聯(lián)系,向“縱、橫、深、廣”拓展,從而

尋找出添加的條件和所得的結(jié)論.

17.(4分)某中學(xué)組織九年級學(xué)生春游,有m名師生租用45座的大客車若干輛,共有2

個空座位,那么租用大客車的輛數(shù)是空2(用機的代數(shù)式表示).

-45一

【分析】讓汽車上一共可坐的人數(shù)除以每輛汽車可坐的人數(shù)即為租用大客車的輛數(shù).

【解答】解:共有2個空座位,那么一共可以坐(m+2)人,

租用大客車的輛數(shù)是空2,

45

故答案為:變2.

45

【點評】考查列代數(shù)式;得到租用大客車的輛數(shù)的等量關(guān)系是解決本題的關(guān)鍵.

18.(4分)在RtaABC中,ZC=90°,AC=3,以點A為圓心,1為半徑作。A,將。4

繞著點C順時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為a(0<a<90°),若G)A與直線BC相切,則Na的

余弦值為1.

一3一

【分析】根據(jù)切線的性質(zhì)得到/A'£>C=90。,根據(jù)旋轉(zhuǎn)變換的性質(zhì)得到C4'=。=3,

根據(jù)余弦的定義計算,得到答案.

【解答】解:設(shè)將OA繞著點C順時針旋轉(zhuǎn),點A至點A'時,OA'與直線8c相切相

切于點D,連接A'D,

則乙4'DC=90°,4'0=1,

由旋轉(zhuǎn)的性質(zhì)可知,CA1=CA=3,

:.sZCA'

COAzC3

9:AC//A,D,

:.a=ZCArD,

AZa的余弦值為工,

3

故答案為:

【點評】本題考查的是切線的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)、銳角三角函數(shù)的定義,掌握圓的

切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.

三、解答題:(本大題共7題,滿分78分)

9(10分)先化簡,再求值:(1+2其中x=2+?.

2

x+2x-2X+2X

【分析】首先對括號內(nèi)的分式進行通分,計算分式的加減,然后把除法轉(zhuǎn)化成乘法,然

后計算分式的乘法即可化簡,然后代入數(shù)值進行計算即可求解.

[解答]解:原式=,_.x(x+2)

(x+2)(x-2)3x+2

—x

當x=2+J§時,原式=2m=2/=2愿+3

2^3-2V33

【點評】本題考查了分式的混合運算,分式混合運算要注意先去括號;分子、分母能因

式分解的先因式分解;除法要統(tǒng)一為乘法運算.

20.(10分)解方程組:(3x2-y2_y+3=o①.

2x-y=l②

【分析】先由②得到關(guān)于y,并代入①,從而求得.

【解答】解:由②得y=2x-1.③(1分)

把③代入①,得37-(2x7)2-(2x7)+3=0.

整理后,得7-2X-3=0.(2分)

解得xi=-l,X2=3.(2分)

把xi=-l代入③,得yi=-3.(2分)

把北=3代入③,得”=5.(2分)

所以,原方程組的解是x=3(1分)

ly=-31y=5

【點評】本題考查了高次方程的運算,從②得到關(guān)于y并代入①,解方程從而得到兩組

解.

21.(10分)如圖,在梯形ABC。中,AD//BC,AB=CD=5,對角線BD平分NABC,cosC

5"

(1)求邊BC的長;

(2)過點4作垂足為點E,求cotNZME的值.

R

【分析】(1)過點。作垂足為點”.在RtaCC”中,由cosC=9,可求得

5

CH,再根據(jù)角平分線的定義以及平行線的性質(zhì),得NABO=/AQB.則A£>=AB=5.即

可求出BC-,

(2)在RtZ\CDH中,可求得£>H,進而得出BH,將角/D4E轉(zhuǎn)化成即可得出

答案.

【解答】解:(1)過點力作D”_LBC,垂足為點兒

在Rt^CD,中,由/C”£>=90°,CD=5,C=—'

cos5

得CH=CD?cosC=5X言=1(1分)

D

???對角線8。平分NA5C,

:?/ABD=/CBD.(1分)

■:AD//BC,

:.NADB=NDBC.

:.ZABD=ZADB,即得AO=48=5.(2分)

于是,由等腰梯形ABC。,可知BC=AZ)+2C"=13.(1分)

u

(2):AE_LBDfDHLBC,

:.ZBHD=ZAED=90°.

,//ADB=/DBC,

:?/DAE=NBDH.(1分)

在RtZ\C。"中,DH=^cD-cH=^52-4^=3,(1分)

在中,BH=BC-CH=13-4=9.(1分)

?,?cotZBDH=^-=—,(1分)

Dny6

:.cotZDAE=cotZBDH=A.(1分)

3

BH

【點評】本題考查了等腰梯形的性質(zhì)、勾股定理以及解直角三角形,是基礎(chǔ)知識要熟練

掌握.

22.(10分)某賓館有客房200間供游客居住,當每間客房的定價為每天180元時,客房恰

好全部住滿;如果每間客房每天的定價每增加10元,就會減少4間客房出租.設(shè)每間客

房每天的定價增加x元,賓館出租的客房為),間.求:

(1)y關(guān)于x的函數(shù)關(guān)系式;

(2)如果某天賓館客房收入38400元,那么這天每間客房的價格是多少元?

【分析】(1)設(shè)每間客房每天的定價增加x元,賓館出租的客房為)'間,根據(jù)某賓館有

客房200間供游客居住,當每間客房的定價為每天180元時,客房恰好全部住滿;如果

每間客房每天的定價每增加10元,就會減少4間客房出租可列出函數(shù)式.

(2)38400是利潤,根據(jù)價格和住房的關(guān)系可列方程求出解

【解答】解:(1)設(shè)每間客房每天的定價增加x元,賓館出租的客房為y間,

根據(jù)題意,得:

y=200-4X工,

■10

?2

,?y=-zrx+200-

D

(2)設(shè)每間客房每天的定價增加x元

根據(jù)題意,得(180+x)(咯x+200)=38400-

D

整理后,得/-320x+6000=0.

解得xi=20,A?=300.(2分)

當x=20時,x+180=200(元).

當x=300時,x+180=480(元).

答:這天的每間客房的價格是200元或480元.

【點評】本題考查理解題意的能力,關(guān)鍵知道漲價和住房的關(guān)系,表示出關(guān)系,根據(jù)利

潤做為等量關(guān)系可列方程求解.

23.(12分)如圖,已知在△A8C中,N8AC=90°,AB=AC,點。在邊上,以4)

為邊作正方形ADEF,聯(lián)結(jié)CF,CE.

(1)求證:FCLBC;

(2)如果BZ)=AC,求證:CD=CE.

【分析】(1)根據(jù)正方形的性質(zhì)得出AD=AF,ZMD=90°=/BAC,求出/項C=N

BAD,證出△4B。絲△ACF,推出/B=/FC4即可;

(2)根據(jù)△A3。絲△ACF,推出BC=CF=AC,求出ND4C=NEFC,根據(jù)SAS推出△

D4c會△£t/(即可.

【解答】證明:(1):四邊形ADEF是正方形,

:.AD=AF,/以。=90°=ZBAC,

:.AFAD-ZDAC=ZBAC-ADAC,

:.ZFAC=ZBAD,

在△A8O和△ACF中

<AB=AC

<NBAD=/FAC,

AD=AF

:.AABD^/\ACF(SAS),

J.ZB^ZFCA,

VZBAC=90°,

.,.ZB+ZACB=90°,

:.ZACB+ZACF=90°,

J.FCLBC.

(2)?.?△ABO-凡

:.BD=CF,

\'BD=AC,

:.AC=CF,

:.ZCAF=ZCFA,

?.?四邊形AOEE是正方形,

:.AD=EF,ZDAF^ZEFA^90°,

,ZDAF-ZCAF=ZEFA-ZCFA,

:.4DAC=ZEFC,

在aD4c和△EFC中

'AD=EF

<NDAC=/EFC,

AC=CF

AADAC^AEFC(SAS),

【點評】本題考查了正方形性質(zhì),全等三角形的性質(zhì)和判定,等腰直角三角形性質(zhì)的應(yīng)

用,主要考查學(xué)生綜合運用定理進行推理的能力.

24.(12分)如圖,在直角坐標平面X。),內(nèi),點4在x軸的正半軸上,點8在第一象限內(nèi),

且NOAB=90°,NBOA=30°,0B=4.二次函數(shù)y=-的圖象經(jīng)過點A,頂點

為點C.

(1)求這個二次函數(shù)的解析式,并寫出頂點C的坐標;

(2)設(shè)這個二次函數(shù)圖象的對稱軸/與0B相交于點。,與x軸相交于點E,求理的值;

DC

(3)設(shè)P是這個二次函數(shù)圖象的對稱軸/上一點,如果△POA的面積與△OCE的面積

【分析】(1)由NOA8=90°,在直角三角形0A8中求得點A,代入函數(shù)式解得.

(2)直角三角形OAB中求得AB的長度,由拋物線的對稱軸可知。E〃A8,OE=AE.求

得DE,進而求得CD從而求得.(3)利用三角形OCE和三角形POA的面積相等即求

得.

【解答】解:(1)048=90°,/8。4=30°,。8=4,

,0A=0B,cos30°=2A/3-

(2?,0).(1分)

?.?二次函數(shù)y=-W+bx的圖象經(jīng)過點A,

-(2V3)2+2V3b=0-

解得b=2?.

二次函數(shù)的解析式為y=_x2+2匾x-艙分)

頂點C的坐標是(J5,3).(1分)

(2);/OAB=90°,/8OA=30°,08=4,

:.AB^2.(1分)

由OE是二次函數(shù)了=_*2+2晶*的圖象的對稱軸,

可知£>E〃AB,OE=AE.

..屈理」即得。E=l.(1分)

AB0A2

又;C(A/3-3),;.CE=3.

即得C£)=2.(1分)

還」.(]分)

DC2

(3)根據(jù)題意,可設(shè)P(炳,?).

vOE^-OA^/3,CE=3,

FOCE/CE=|△(1分)

.11LII3>/3

??SAP0A=^0A-PE=yX2V3In|=-y-

解得+旦.(1分)

2

.?.點P的坐標為Pi(?,3)、P2(?,—3).(2分)

22

【點評】本題考查了二次函數(shù)的綜合運用,考查了直角三角形內(nèi)的三角函數(shù),拋

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論