2023屆北師大萬寧附中高考臨考沖刺數(shù)學試卷含解析_第1頁
2023屆北師大萬寧附中高考臨考沖刺數(shù)學試卷含解析_第2頁
2023屆北師大萬寧附中高考臨考沖刺數(shù)學試卷含解析_第3頁
2023屆北師大萬寧附中高考臨考沖刺數(shù)學試卷含解析_第4頁
2023屆北師大萬寧附中高考臨考沖刺數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.運行如圖所示的程序框圖,若輸出的的值為99,則判斷框中可以填()A. B. C. D.2.單位正方體ABCD-,黑、白兩螞蟻從點A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設白、黑螞蟻都走完2020段后各自停止在正方體的某個頂點處,這時黑、白兩螞蟻的距離是()A.1 B. C. D.03.雙曲線的漸近線方程為()A. B. C. D.4.已知x,y滿足不等式,且目標函數(shù)z=9x+6y最大值的變化范圍[20,22],則t的取值范圍()A.[2,4] B.[4,6] C.[5,8] D.[6,7]5.若的展開式中的系數(shù)之和為,則實數(shù)的值為()A. B. C. D.16.設,且,則()A. B. C. D.7.展開項中的常數(shù)項為A.1 B.11 C.-19 D.518.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.39.某幾何體的三視圖如圖所示,其中正視圖是邊長為4的正三角形,俯視圖是由邊長為4的正三角形和一個半圓構成,則該幾何體的體積為()A. B. C. D.10.已知函數(shù)在上可導且恒成立,則下列不等式中一定成立的是()A.、B.、C.、D.、11.在直角坐標系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點P,使得|PA|=2|PB|,則正實數(shù)m的最小值是()A. B.3 C. D.12.已知三棱錐中,是等邊三角形,,則三棱錐的外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,若向量與共線,則________.14.在中,角,,的對邊分別為,,,若,且,則面積的最大值為________.15.若雙曲線的離心率為,則雙曲線的漸近線方程為______.16.若x,y滿足,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負半軸為極軸,取相同的單位長度建立極坐標系,曲線的極坐標方程為,直線的極坐標方程為,點.(1)求曲線的極坐標方程與直線的直角坐標方程;(2)若直線與曲線交于點,曲線與曲線交于點,求的面積.18.(12分)已知函數(shù).(1)當時.①求函數(shù)在處的切線方程;②定義其中,求;(2)當時,設,(為自然對數(shù)的底數(shù)),若對任意給定的,在上總存在兩個不同的,使得成立,求的取值范圍.19.(12分)已知矩陣,.求矩陣;求矩陣的特征值.20.(12分)設,,其中.(1)當時,求的值;(2)對,證明:恒為定值.21.(12分)已知函數(shù),.(1)當為何值時,軸為曲線的切線;(2)用表示、中的最大值,設函數(shù),當時,討論零點的個數(shù).22.(10分)如圖所示,在四棱錐中,底面為正方形,,,,,為的中點,為棱上的一點.(1)證明:面面;(2)當為中點時,求二面角余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

模擬執(zhí)行程序框圖,即可容易求得結果.【詳解】運行該程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此時要輸出的值為99.此時.故選:C.【點睛】本題考查算法與程序框圖,考查推理論證能力以及化歸轉化思想,涉及判斷條件的選擇,屬基礎題.2、B【解析】

根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經過幾段后又回到起點,得到每爬1步回到起點,周期為1.計算黑螞蟻爬完2020段后實質是到達哪個點以及計算白螞蟻爬完2020段后實質是到達哪個點,即可計算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過1段后又回到起點,可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點;同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點,所以它們此時的距離為.故選B.【點睛】本題考查多面體和旋轉體表面上的最短距離問題,考查空間想象與推理能力,屬于中等題.3、C【解析】

根據(jù)雙曲線的標準方程,即可寫出漸近線方程.【詳解】雙曲線,雙曲線的漸近線方程為,故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于容易題.4、B【解析】

作出可行域,對t進行分類討論分析目標函數(shù)的最大值,即可求解.【詳解】畫出不等式組所表示的可行域如圖△AOB當t≤2時,可行域即為如圖中的△OAM,此時目標函數(shù)z=9x+6y在A(2,0)取得最大值Z=18不符合題意t>2時可知目標函數(shù)Z=9x+6y在的交點()處取得最大值,此時Z=t+16由題意可得,20≤t+16≤22解可得4≤t≤6故選:B.【點睛】此題考查線性規(guī)劃,根據(jù)可行域結合目標函數(shù)的最大值的取值范圍求參數(shù)的取值范圍,涉及分類討論思想,關鍵在于熟練掌握截距型目標函數(shù)的最大值最優(yōu)解的處理辦法.5、B【解析】

由,進而分別求出展開式中的系數(shù)及展開式中的系數(shù),令二者之和等于,可求出實數(shù)的值.【詳解】由,則展開式中的系數(shù)為,展開式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點睛】本題考查二項式定理的應用,考查學生的計算求解能力,屬于基礎題.6、C【解析】

將等式變形后,利用二次根式的性質判斷出,即可求出的范圍.【詳解】即故選:C【點睛】此題考查解三角函數(shù)方程,恒等變化后根據(jù)的關系即可求解,屬于簡單題目.7、B【解析】

展開式中的每一項是由每個括號中各出一項組成的,所以可分成三種情況.【詳解】展開式中的項為常數(shù)項,有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項中的常數(shù)項為,故選B.【點睛】本題考查二項式定理知識的生成過程,考查定理的本質,即展開式中每一項是由每個括號各出一項相乘組合而成的.8、A【解析】

由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關系,考查學生的運算能力,是一道容易題.9、A【解析】由題意得到該幾何體是一個組合體,前半部分是一個高為底面是邊長為4的等邊三角形的三棱錐,后半部分是一個底面半徑為2的半個圓錐,體積為故答案為A.點睛:思考三視圖還原空間幾何體首先應深刻理解三視圖之間的關系,遵循“長對正,高平齊,寬相等”的基本原則,其內涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調整.10、A【解析】

設,利用導數(shù)和題設條件,得到,得出函數(shù)在R上單調遞增,得到,進而變形即可求解.【詳解】由題意,設,則,又由,所以,即函數(shù)在R上單調遞增,則,即,變形可得.故選:A.【點睛】本題主要考查了利用導數(shù)研究函數(shù)的單調性及其應用,以及利用單調性比較大小,其中解答中根據(jù)題意合理構造新函數(shù),利用新函數(shù)的單調性求解是解答的關鍵,著重考查了構造思想,以及推理與計算能力,屬于中檔試題.11、D【解析】

設點,由,得關于的方程.由題意,該方程有解,則,求出正實數(shù)m的取值范圍,即求正實數(shù)m的最小值.【詳解】由題意,設點.,即,整理得,則,解得或..故選:.【點睛】本題考查直線與方程,考查平面內兩點間距離公式,屬于中檔題.12、D【解析】

根據(jù)底面為等邊三角形,取中點,可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫出幾何關系,設球心為,即可由球的性質和勾股定理求得球的半徑,進而得球的表面積.【詳解】設為中點,是等邊三角形,所以,又因為,且,所以平面,則,由三線合一性質可知所以三棱錐為正三棱錐,設底面等邊的重心為,可得,,所以三棱錐的外接球球心在面下方,設為,如下圖所示:由球的性質可知,平面,且在同一直線上,設球的半徑為,在中,,即,解得,所以三棱錐的外接球表面積為,故選:D.【點睛】本題考查了三棱錐的結構特征和相關計算,正三棱錐的外接球半徑求法,球的表面積求法,對空間想象能力要求較高,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

計算得到,根據(jù)向量平行計算得到答案.【詳解】由題意可得,因為與共線,所以有,即,解得.故答案為:.【點睛】本題考查了根據(jù)向量平行求參數(shù),意在考查學生的計算能力.14、【解析】

利用正弦定理將角化邊得到,再由余弦定理得到,根據(jù)同角三角函數(shù)的基本關系表示出,最后利用面積公式得到,由基本不等式求出的取值范圍,即可得到面積的最值;【詳解】解:∵在中,,∴,∴,∴,∴.∵,即,當且僅當時等號成立,∴,∴面積的最大值為.故答案為:【點睛】本題考查正弦定理、余弦定理解三角形,三角形面積公式的應用,以及基本不等式的應用,屬于中檔題.15、【解析】

利用,得到的關系式,然后代入雙曲線的漸近線方程即可求解.【詳解】因為雙曲線的離心率為,所以,即,因為雙曲線的漸近線方程為,所以雙曲線的漸近線方程為.故答案為:【點睛】本題考查雙曲線的幾何性質;考查運算求解能力;熟練掌握雙曲線的幾何性質是求解本題的關鍵;屬于基礎題.16、5【解析】

先作出可行域,再做直線,平移,找到使直線在y軸上截距最小的點,代入即得?!驹斀狻孔鞒霾坏仁浇M表示的平面區(qū)域,如圖,令,則,作出直線,平移直線,由圖可得,當直線經過C點時,直線在y軸上的截距最小,由,可得,因此的最小值為.故答案為:4【點睛】本題考查不含參數(shù)的線性規(guī)劃問題,是基礎題。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).(2)【解析】

(1)根據(jù)題意代入公式化簡即可得到.(2)聯(lián)立極坐標方程通過極坐標的幾何意義求解,再求點到直線的距離即可算出三角形面積.【詳解】解:(1)曲線,即.∴.曲線的極坐標方程為.直線的極坐標方程為,即,∴直線的直角坐標方程為.(2)設,,∴,解得.又,∴(舍去).∴.點到直線的距離為,∴的面積為.【點睛】此題考查參數(shù)方程,極坐標,直角坐標之間相互轉化,注意參數(shù)方程只能先轉化為直角坐標再轉化為極坐標,屬于較易題目.18、(1)①;②8079;(2).【解析】

(1)①時,,,利用導數(shù)的幾何意義能求出函數(shù)在處的切線方程.②由,得,由此能求出的值.(2)根據(jù)若對任意給定的,,在區(qū)間,上總存在兩個不同的,使得成立,得到函數(shù)在區(qū)間,上不單調,從而求得的取值范圍.【詳解】(1)①∵,∴∴,∴,∵,所以切線方程為.②,.令,則,.因為①,所以②,由①+②得,所以.所以.(2),當時,函數(shù)單調遞增;當時,,函數(shù)單調遞減∵,,所以,函數(shù)在上的值域為.因為,,故,,①此時,當變化時、的變化情況如下:—0+單調減最小值單調增∵,,∴對任意給定的,在區(qū)間上總存在兩個不同的,使得成立,當且僅當滿足下列條件,即令,,,當時,,函數(shù)單調遞增,當時,,函數(shù)單調遞減所以,對任意,有,即②對任意恒成立.由③式解得:④綜合①④可知,當時,對任意給定的,在上總存在兩個不同的,使成立.【點睛】本題考查了導數(shù)的幾何意義、應用導數(shù)研究函數(shù)的單調性、求函數(shù)最值問題,會利用導函數(shù)的正負確定函數(shù)的單調性,會根據(jù)函數(shù)的增減性求出閉區(qū)間上函數(shù)的最值,掌握不等式恒成立時所滿足的條件.不等式恒成立常轉化為函數(shù)最值問題解決.19、;,.【解析】

由題意,可得,利用矩陣的知識求解即可.矩陣的特征多項式為,令,求出矩陣的特征值.【詳解】設矩陣,則,所以,解得,,,,所以矩陣;矩陣的特征多項式為,令,解得,,即矩陣的兩個特征值為,.【點睛】本題考查矩陣的知識點,屬于常考題.20、(1)1(2)1【解析】分析:(1)當時可得,可得.(2)先得到關系式,累乘可得,從而可得,即為定值.詳解:(1)當時,,又,所以.(2)即,由累乘可得,又,所以.即恒為定值1.點睛:本題考查組合數(shù)的有關運算,解題時要注意所給出的的定義,并結合組合數(shù)公式求解.由于運算量較大,解題時要注意運算的準確性,避免出現(xiàn)錯誤.21、(1);(2)見解析.【解析】

(1)設切點坐標為,然后根據(jù)可解得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論