版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若sin(α+3π2A.-12 B.-132.函數的部分圖象大致為()A. B.C. D.3.若(),,則()A.0或2 B.0 C.1或2 D.14.已知為虛數單位,實數滿足,則()A.1 B. C. D.5.已知數列滿足,且成等比數列.若的前n項和為,則的最小值為()A. B. C. D.6.某幾何體的三視圖如圖所示,三視圖是腰長為1的等腰直角三角形和邊長為1的正方形,則該幾何體中最長的棱長為().A. B. C.1 D.7.已知函數是上的減函數,當最小時,若函數恰有兩個零點,則實數的取值范圍是()A. B.C. D.8.若執(zhí)行如圖所示的程序框圖,則輸出的值是()A. B. C. D.49.已知函數,,若對任意,總存在,使得成立,則實數的取值范圍為()A. B.C. D.10.函數的圖象的大致形狀是()A. B. C. D.11.若實數滿足不等式組,則的最大值為()A. B. C.3 D.212.設,分別為雙曲線(a>0,b>0)的左、右焦點,過點作圓的切線與雙曲線的左支交于點P,若,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.銳角中,角,,所對的邊分別為,,,若,則的取值范圍是______.14.定義在R上的函數滿足:①對任意的,都有;②當時,,則函數的解析式可以是______________.15.關于函數有下列四個命題:①函數在上是增函數;②函數的圖象關于中心對稱;③不存在斜率小于且與函數的圖象相切的直線;④函數的導函數不存在極小值.其中正確的命題有______.(寫出所有正確命題的序號)16.設f(x)=etx(t>0),過點P(t,0)且平行于y軸的直線與曲線C:y=f(x)的交點為Q,曲線C過點Q的切線交x軸于點R,若S(1,f(1)),則△PRS的面積的最小值是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線的參數方程為(為參數).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程及直線的直角坐標方程;(2)求曲線上的點到直線的距離的最大值與最小值.18.(12分)某大型單位舉行了一次全體員工都參加的考試,從中隨機抽取了20人的分數.以下莖葉圖記錄了他們的考試分數(以十位數字為莖,個位數字為葉):若分數不低于95分,則稱該員工的成績?yōu)椤皟?yōu)秀”.(1)從這20人中任取3人,求恰有1人成績“優(yōu)秀”的概率;(2)根據這20人的分數補全下方的頻率分布表和頻率分布直方圖,并根據頻率分布直方圖解決下面的問題.組別分組頻數頻率1234①估計所有員工的平均分數(同一組中的數據用該組區(qū)間的中點值作代表);②若從所有員工中任選3人,記表示抽到的員工成績?yōu)椤皟?yōu)秀”的人數,求的分布列和數學期望.19.(12分)已知拋物線上一點到焦點的距離為2,(1)求的值與拋物線的方程;(2)拋物線上第一象限內的動點在點右側,拋物線上第四象限內的動點,滿足,求直線的斜率范圍.20.(12分)已知函數.(1)求曲線在點處的切線方程;(2)若對任意的,當時,都有恒成立,求最大的整數.(參考數據:)21.(12分)過點作傾斜角為的直線與曲線(為參數)相交于M、N兩點.(1)寫出曲線C的一般方程;(2)求的最小值.22.(10分)的內角A,B,C的對邊分別為a,b,c,已知.(1)求B;(2)若,求的面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由三角函數的誘導公式和倍角公式化簡即可.【詳解】因為sinα+3π2=3故選B【點睛】本題考查了三角函數的誘導公式和倍角公式,靈活掌握公式是關鍵,屬于基礎題.2、B【解析】
圖像分析采用排除法,利用奇偶性判斷函數為奇函數,再利用特值確定函數的正負情況。【詳解】,故奇函數,四個圖像均符合。當時,,,排除C、D當時,,,排除A。故選B。【點睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調性、及特殊值。3、A【解析】
利用復數的模的運算列方程,解方程求得的值.【詳解】由于(),,所以,解得或.故選:A【點睛】本小題主要考查復數模的運算,屬于基礎題.4、D【解析】,則故選D.5、D【解析】
利用等比中項性質可得等差數列的首項,進而求得,再利用二次函數的性質,可得當或時,取到最小值.【詳解】根據題意,可知為等差數列,公差,由成等比數列,可得,∴,解得.∴.根據單調性,可知當或時,取到最小值,最小值為.故選:D.【點睛】本題考查等差數列通項公式、等比中項性質、等差數列前項和的最值,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意當或時同時取到最值.6、B【解析】
首先由三視圖還原幾何體,進一步求出幾何體的棱長.【詳解】解:根據三視圖還原幾何體如圖所示,所以,該四棱錐體的最長的棱長為.故選:B.【點睛】本題主要考查由三視圖還原幾何體,考查運算能力和推理能力,屬于基礎題.7、A【解析】
首先根據為上的減函數,列出不等式組,求得,所以當最小時,,之后將函數零點個數轉化為函數圖象與直線交點的個數問題,畫出圖形,數形結合得到結果.【詳解】由于為上的減函數,則有,可得,所以當最小時,,函數恰有兩個零點等價于方程有兩個實根,等價于函數與的圖像有兩個交點.畫出函數的簡圖如下,而函數恒過定點,數形結合可得的取值范圍為.故選:A.【點睛】該題考查的是有關函數的問題,涉及到的知識點有分段函數在定義域上單調減求參數的取值范圍,根據函數零點個數求參數的取值范圍,數形結合思想的應用,屬于中檔題目.8、D【解析】
模擬程序運行,觀察變量值的變化,得出的變化以4為周期出現,由此可得結論.【詳解】;如此循環(huán)下去,當時,,此時不滿足,循環(huán)結束,輸出的值是4.故選:D.【點睛】本題考查程序框圖,考查循環(huán)結構.解題時模擬程序運行,觀察變量值的變化,確定程序功能,可得結論.9、C【解析】
將函數解析式化簡,并求得,根據當時可得的值域;由函數在上單調遞減可得的值域,結合存在性成立問題滿足的集合關系,即可求得的取值范圍.【詳解】依題意,則,當時,,故函數在上單調遞增,當時,;而函數在上單調遞減,故,則只需,故,解得,故實數的取值范圍為.故選:C.【點睛】本題考查了導數在判斷函數單調性中的應用,恒成立與存在性成立問題的綜合應用,屬于中檔題.10、B【解析】
根據函數奇偶性,可排除D;求得及,由導函數符號可判斷在上單調遞增,即可排除AC選項.【詳解】函數易知為奇函數,故排除D.又,易知當時,;又當時,,故在上單調遞增,所以,綜上,時,,即單調遞增.又為奇函數,所以在上單調遞增,故排除A,C.故選:B【點睛】本題考查了根據函數解析式判斷函數圖象,導函數性質與函數圖象關系,屬于中檔題.11、C【解析】
作出可行域,直線目標函數對應的直線,平移該直線可得最優(yōu)解.【詳解】作出可行域,如圖由射線,線段,射線圍成的陰影部分(含邊界),作直線,平移直線,當過點時,取得最大值1.故選:C.【點睛】本題考查簡單的線性規(guī)劃問題,解題關鍵是作出可行域,本題要注意可行域不是一個封閉圖形.12、C【解析】
設過點作圓的切線的切點為,根據切線的性質可得,且,再由和雙曲線的定義可得,得出為中點,則有,得到,即可求解.【詳解】設過點作圓的切線的切點為,,所以是中點,,,.故選:C.【點睛】本題考查雙曲線的性質、雙曲線定義、圓的切線性質,意在考查直觀想象、邏輯推理和數學計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由余弦定理,正弦定理得出,從而得出,推出的范圍,由余弦函數的性質得出的范圍,再利用二倍角公式化簡,即可得出答案.【詳解】由題意得由正弦定理得化簡得又為銳角三角形,則,,.故答案為【點睛】本題主要考查了正弦定理和余弦定理的應用,屬于中檔題.14、(或,答案不唯一)【解析】
由可得是奇函數,再由時,可得到滿足條件的奇函數非常多,屬于開放性試題.【詳解】在中,令,得;令,則,故是奇函數,由時,,知或等,答案不唯一.故答案為:(或,答案不唯一).【點睛】本題考查抽象函數的性質,涉及到由表達式確定函數奇偶性,是一道開放性的題,難度不大.15、①②③【解析】
由單調性、對稱性概念、導數的幾何意義、導數與極值的關系進行判斷.【詳解】函數的定義域是,由于,在上遞增,∴函數在上是遞增,①正確;,∴函數的圖象關于中心對稱,②正確;,時取等號,∴③正確;,設,則,顯然是即的極小值點,④錯誤.故答案為:①②③.【點睛】本題考查函數的單調性、對稱性,考查導數的幾何意義、導數與極值,解題時按照相關概念判斷即可,屬于中檔題.16、【解析】
計算R(t,0),PR=t﹣(t),△PRS的面積為S,導數S′,由S′=0得t=1,根據函數的單調性得到最值.【詳解】∵PQ∥y軸,P(t,0),∴Q(t,f(t))即Q(t,),又f(x)=etx(t>0)的導數f′(x)=tetx,∴過Q的切線斜率k=t,設R(r,0),則k,∴r=t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,et),∴△PRS的面積為S,導數S′,由S′=0得t=1,當t>1時,S′>0,當0<t<1時,S′<0,∴t=1為極小值點,也為最小值點,∴△PRS的面積的最小值為.故答案為:.【點睛】本題考查了利用導數求面積的最值問題,意在考查學生的計算能力和應用能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)最大值,最小值【解析】
(1)由曲線的參數方程,得兩式平方相加求解,根據直線的極坐標方程,展開有,再根據求解.(2)因為曲線C是一個半圓,利用數形結合,圓心到直線的距離減半徑即為最小值,最大值點由圖可知.【詳解】(1)因為曲線的參數方程為所以兩式平方相加得:因為直線的極坐標方程為.所以所以即(2)如圖所示:圓心C到直線的距離為:所以圓上的點到直線的最小值為:則點M(2,0)到直線的距離為最大值:【點睛】本題主要考查參數方程,普通方程及極坐標方程的轉化和直線與圓的位置關系,還考查了數形結合的思想和運算求解的能力,屬于中檔題.18、(1);(2)①82,②分布列見解析,【解析】
(1)從20人中任取3人共有種結果,恰有1人成績“優(yōu)秀”共有種結果,利用古典概型的概率計算公式計算即可;(2)①平均數的估計值為各小矩形的組中值與其面積乘積的和;②要注意服從的是二項分布,不是超幾何分布,利用二項分布的分布列及期望公式求解即可.【詳解】(1)設從20人中任取3人恰有1人成績“優(yōu)秀”為事件,則,所以,恰有1人“優(yōu)秀”的概率為.(2)組別分組頻數頻率120.01260.03380.04440.02①,估計所有員工的平均分為82②的可能取值為0、1、2、3,隨機選取1人是“優(yōu)秀”的概率為,∴;;;;∴的分布列為0123∵,∴數學期望.【點睛】本題考查古典概型的概率計算以及二項分布期望的問題,涉及到頻率分布直方圖、平均數的估計值等知識,是一道容易題.19、(1)1;(2)【解析】
(1)根據點到焦點的距離為2,利用拋物線的定義得,再根據點在拋物線上有,列方程組求解,(2)設,根據,再由,求得,當,即時,直線斜率不存在;當時,,令,利用導數求解,【詳解】(1)因為點到焦點的距離為2,即點到準線的距離為2,得,又,解得,所以拋物線方程為(2)設,由由,則當,即時,直線斜率不存在;當時,令,所以在上分別遞減則【點睛】本題主要考查拋物線定義及方程的應用,還考查了分類討論的思想和運算求解的能力,屬于中檔題,20、(1)(2)2【解析】
(1)先求得切點坐標,利用導數求得切線的斜率,由此求得切線方程.(2)對分成,兩種情況進行分類討論.當時,將不等式轉化為,構造函數,利用導數求得的最小值(設為)的取值范圍,由的得在上恒成立,結合一元二次不等式恒成立,判別式小于零列不等式,解不等式求得的取值范圍.【詳解】(1)已知函數,則處即為,又,,可知函數過點的切線為,即.(2)注意到,不等式中,當時,顯然成立;當時,不等式可化為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年水產養(yǎng)殖病害防控策略指南
- 2026青海西寧市城北區(qū)大堡子鎮(zhèn)中心衛(wèi)生院招聘衛(wèi)生專業(yè)技術人員的1人備考題庫含答案詳解
- 2026浙江寧波市鎮(zhèn)海中學國際部誠招學科雙語教師備考題庫及完整答案詳解1套
- 2026年林下經濟模式創(chuàng)新發(fā)展課
- 軟件開發(fā)大數據模塊開發(fā)規(guī)范手冊
- 2026福建三明市永安市羅坊鄉(xiāng)人民政府招聘編外聘用駕駛員1人備考題庫及完整答案詳解1套
- 2026年企業(yè)并購法律盡調實務培訓
- 職業(yè)健康促進與企業(yè)健康管理未來趨勢
- 駐馬店2025年河南駐馬店市平輿縣人民醫(yī)院招聘人事代理人員28人筆試歷年參考題庫附帶答案詳解
- 金華2025年浙江金華義烏市人民檢察院司法雇員招錄6人筆試歷年參考題庫附帶答案詳解
- 江蘇省鹽城市大豐區(qū)四校聯考2025-2026學年七年級上學期12月月考歷史試卷(含答案)
- 文化IP授權使用框架協議
- 2024年廣西壯族自治區(qū)公開遴選公務員筆試試題及答案解析(綜合類)
- 湖北煙草專賣局招聘考試真題2025
- 人教部編五年級語文下冊古詩三首《四時田園雜興(其三十一)》示范公開課教學課件
- AI領域求職者必看美的工廠AI面試實戰(zhàn)經驗分享
- 4.2《揚州慢》課件2025-2026學年統(tǒng)編版高中語文選擇性必修下冊
- 捻線工三級安全教育(公司級)考核試卷及答案
- 學校智慧校園建設協議
- 上海市中考物理基礎選擇百題練習
- 預制板粘貼碳纖維加固計算表格
評論
0/150
提交評論