版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年河南省平頂山市普通高校對口單招數(shù)學自考真題(含答案)學校:________班級:________姓名:________考號:________
一、單選題(20題)1.設是l,m兩條不同直線,α,β是兩個不同平面,則下列命題中正確的是()A.若l//α,α∩β=m,則l//m
B.若l//α,m⊥l,則m⊥α
C.若l//α,m//α,則l//m
D.若l⊥α,l///β則a⊥β
2.若f(x)=1/log1/2(2x+1),則f(x)的定義域為()A.(-1/2,0)B.(-1/2,+∞)C.(-1/2,0)∪(0,+∞)D.(-1/2,2)
3.已知P:x1,x2是方程x2-2y-6=0的兩個根,Q:x1+x2=-5,則P是Q的()A.充分條件B.必要條件C.充要條件D.既不充分也不必要條件
4.若f(x)=logax(a>0且a≠1)的圖像與g(x)=logbx(b>0,b≠1)的關(guān)于x軸對稱,則下列正確的是()A.a>bB.a=bC.a<bD.AB=1
5.用簡單隨機抽樣的方法從含有100個個體的總體中依次抽取一個容量為5的樣本,則個體m被抽到的概率為()A.1/100B.1/20C.1/99D.1/50
6.二項式(x-2)7展開式中含x5的系數(shù)等于()A.-21B.21C.-84D.84
7.已知i是虛數(shù)單位,則1+2i/1+i=()A.3-i/2B.3+i/2C.3-iD.3+i
8.對于數(shù)列0,0,0,...,0,...,下列表述正確的是()A.是等比但不是等差數(shù)列B.既是等差又是等比數(shù)列C.既不是等差又不是等比數(shù)列D.是等差但不是等比數(shù)列
9.cos215°-sin215°=()A.
B.
C.
D.-1/2
10.A.
B.
C.
11.己知,則這樣的集合P有()個數(shù)A.3B.2C.4D.5
12.已知橢圓x2/25+y2/m2=1(m>0)的左焦點為F1(-4,0)則m=()A.2B.3C.4D.9
13.函數(shù)y=lg(1-x)(x<0)的反函數(shù)是()A.y=101-x(x<0)
B.y=101-x(x>0)
C.y=1-10x(x<0)
D.y=1-10x(x>0)
14.已知a=(4,-4),點A(1,-1),B(2,-2),那么()A.a=ABB.a⊥ABC.|a|=|AB|D.a//AB
15.在等比數(shù)列中,a1+a2=162,a3+a4=18,那么a4+a5等于()A.6B.-6C.±2D.±6
16.將三名教師排列到兩個班任教的安排方案數(shù)為()A.5B.6C.8D.9
17.(1-x)4的展開式中,x2的系數(shù)是()A.6B.-6C.4D.-4
18.A.B.C.D.
19.執(zhí)行如圖所示的程序框圖,輸出n的值為()A.19B.20C.21D.22
20.“a=0”是“a2+b2=0”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件
二、填空題(10題)21.若lgx>3,則x的取值范圍為____.
22.五位同學站成一排,其中甲既不站在排頭也不站在排尾的排法有_____種.
23.設AB是異面直線a,b的公垂線段,已知AB=2,a與b所成角為30°,在a上取線段AP=4,則點P到直線b的距離為_____.
24.如圖是一個程序框圖,若輸入x的值為8,則輸出的k的值為_________.
25.cos45°cos15°+sin45°sin15°=
。
26.集合A={1,2,3}的子集的個數(shù)是
。
27.長方體中,具有公共頂點A的三個面的對角線長分別是2,4,6,那么這個長方體的對角線的長是_____.
28.已知拋物線的頂點為原點,焦點在y軸上,拋物線上的點M(m,-2)到焦點的距離為4,則m的值為_____.
29.正方體ABCD-A1B1C1D1中AC與AC1所成角的正弦值為
。
30.執(zhí)行如圖所示的流程圖,則輸出的k的值為_______.
三、計算題(5題)31.己知直線l與直線y=2x+5平行,且直線l過點(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.
32.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
33.有語文書3本,數(shù)學書4本,英語書5本,書都各不相同,要把這些書隨機排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語書不挨著排的概率P。
34.解不等式4<|1-3x|<7
35.己知{an}為等差數(shù)列,其前n項和為Sn,若a3=6,S3=12,求公差d.
四、簡答題(10題)36.己知邊長為a的正方形ABCD,PA丄底面ABCD,PA=a,求證,PC丄BD
37.如圖,四棱錐P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求證:BC丄平面PAC。(2)求點B到平面PCD的距離。
38.某籃球運動員進行投籃測驗,每次投中的概率是0.9,假設每次投籃之間沒有影響(1)求該運動員投籃三次都投中的概率(2)求該運動員投籃三次至少一次投中的概率
39.計算
40.組成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)列分別加上1、3、5后又成等比數(shù)列,求這三個數(shù)
41.設函數(shù)是奇函數(shù)(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)當x<0時,判斷f(x)的單調(diào)性并加以證明.
42.三個數(shù)a,b,c成等差數(shù)列,公差為3,又a,b+1,c+6成等比數(shù)列,求a,b,c。
43.若α,β是二次方程的兩個實根,求當m取什么值時,取最小值,并求出此最小值
44.化簡
45.如圖:在長方體從中,E,F(xiàn)分別為和AB和中點。(1)求證:AF//平面。(2)求與底面ABCD所成角的正切值。
五、證明題(10題)46.△ABC的三邊分別為a,b,c,為且,求證∠C=
47.
48.己知sin(θ+α)=sin(θ+β),求證:
49.若x∈(0,1),求證:log3X3<log3X<X3.
50.如圖所示,四棱錐中P-ABCD,底面ABCD為矩形,點E為PB的中點.求證:PD//平面ACE.
51.己知正方體ABCD-A1B1C1D1,證明:直線AC1與直線A1D1所成角的余弦值為.
52.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.
53.長、寬、高分別為3,4,5的長方體,沿相鄰面對角線截取一個三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.
54.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標準方程為(x-1)2
+(y+1)2
=8.
55.己知
a
=(-1,2),b
=(-2,1),證明:cos〈a,b〉=4/5.
六、綜合題(2題)56.己知橢圓與拋物線y2=4x有共同的焦點F2,過橢圓的左焦點F1作傾斜角為的直線,與橢圓相交于M、N兩點.求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.
57.在△ABC中,角A,B,C的對邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
參考答案
1.D空間中直線與平面的位置關(guān)系,平面與平面的位置關(guān)系.對于A:l與m可能異面,排除A;對于B;m與α可能平行或相交,排除B;對于C:l與m可能相交或異面,排除C
2.C函數(shù)的定義域.㏒1/2(2x+l)≠0,所以2x+l>0,2x+l≠1.所以x∈(-1/2,0)∪(0,+∞).
3.A根據(jù)根與系數(shù)的關(guān)系,可知由P能夠得到Q,而已知x1+x2=5,并不能推出二者是原方程的根,所以P是Q的充分條件。
4.D
5.B簡單隨機抽樣方法.總體含有100個個體,則每個個體被抽到的概率為1/100,所以以簡單隨機抽樣的方法從該總體中抽取一個容量為5的樣本,則指定的某個個體被抽到的概率為1/100×5=1/20.
6.D
7.B復數(shù)的運算.=1+2i/1+i=(1+2i)(1-i)f(1+i)(1-i)=l-i+2i-2i2/1-i2=3+i/2
8.D
9.B余弦的二倍角公式.由余弦的二倍角公式cos2α=cos2α-sin2α可得cos215°-sin215°=cos30°=/2,
10.B
11.C
12.B橢圓的性質(zhì).由題意知25-m2=16,解得m2=9,又m>0,所以m=3.
13.D
14.D由,則兩者平行。
15.D設公比等于q,則由題意可得,,解得,或。當時,,當時,,所以結(jié)果為。
16.B
17.A
18.A
19.B程序框圖的運算.模擬執(zhí)行如圖所示的程序框圖知,該程序的功能是計算S=1+2+...+n≥210時n的最小自然數(shù)值,由S=n(n+1)/2≥210,解得n≥20,∴輸出n的值為20.
20.B命題的判定.若a2+b2=0,則a=b=0;若a=0,則a2+b2不一定等于0.
21.x>1000對數(shù)有意義的條件
22.72,
23.
,以直線b和A作平面,作P在該平面上的垂點D,作DC垂直b于C,則有PD=,BD=4,DC=2,因此PC=,(PC為垂直于b的直線).
24.4程序框圖的運算.執(zhí)行循環(huán)如下:x=2×8+1=17,k=1;x=2×17+1=35,k=2時;x=2×35+1=71,k=3時;x=2×71+1=143>115,k=4,此時滿足條件.故輸出k的值為4.
25.
,
26.8
27.
28.±4,
29.
,由于CC1=1,AC1=,所以角AC1C的正弦值為。
30.5程序框圖的運算.由題意,執(zhí)行程序框圖,可得k=1,S=1,S=3,k=2不滿足條件S>16,S=8,k=3不滿足條件S>16,S=16,k=4不滿足條件S>16,S=27,k=5滿足條件S>16,退出循環(huán),輸出k的值為5.故答案為:5.
31.解:(1)設所求直線l的方程為:2x-y+c=0∵直線l過點(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當x=0時,y=-4∴直線l在y軸上的截距為-4
32.
33.
34.
35.
36.證明:連接ACPA⊥平面ABCD,PC是斜線,BD⊥ACPC⊥BD(三垂線定理)
37.證明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC則BC丄平面PAC(2)設點B到平面PCD的距離為hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1則△ADC為等邊三角形,且AC=1PA=
PD=PC=2
38.(1)P=0.9×0.9×0.9=0.729(2)P=1-0.1×0.1×0.1=0.999
39.
40.
41.
∴
∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴
∴得0<b<∵b∈Z∴b=1∴(2)設-1<<<0∵
∴
若時
故當X<-1時為增函數(shù);當-1≤X<0為減函數(shù)
42.由已知得:由上可解得
43.
44.1+2cos2a-cos2=1+2cos2a-(cos2a-sin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧省葫蘆島市2025-2026學年高二上學期1月期末考試歷史試卷(含答案)
- 湖南省炎德英才大聯(lián)考2025-2026學年高二上學期期末試卷語文試題(含答案)
- 2026云南臨滄滄源佤族自治縣職業(yè)技術(shù)學校宿舍管理員招聘1人考試備考題庫及答案解析
- 疫情-小區(qū)活動策劃方案(3篇)
- 裝潢水路施工方案(3篇)
- 花店節(jié)日活動策劃方案(3篇)
- 2026廣東廣州市天河區(qū)同仁藝體實驗中學招聘教師2人備考考試試題及答案解析
- 2026西藏阿里地區(qū)改則縣外聘環(huán)保專業(yè)技術(shù)人員2人備考考試題庫及答案解析
- 2026廣東中山市大涌鎮(zhèn)中心幼兒園招聘事業(yè)單位編外人員7人考試備考題庫及答案解析
- 2026福建浦盛產(chǎn)業(yè)發(fā)展集團有限公司浦城縣浦恒供應鏈有限公司職業(yè)經(jīng)理人招聘備考考試題庫及答案解析
- 學堂在線 雨課堂 學堂云 實繩結(jié)技術(shù) 章節(jié)測試答案
- 2024新版《藥品管理法》培訓課件
- 不良貸款清收經(jīng)驗分享
- 小美滿合唱五線譜總譜
- 《陸上風電場工程設計概算編制規(guī)定及費用標準》(NB-T 31011-2019)
- 介入導管室有關(guān)知識課件
- 騰訊云智慧機場建設方案
- 2024年黑龍江哈爾濱“丁香人才周”哈爾濱市生態(tài)環(huán)境局所屬事業(yè)單位招聘筆試沖刺題
- 推廣經(jīng)理半年工作計劃
- 110kV線路運維方案
- 智能化弱電工程常見質(zhì)量通病的避免方法
評論
0/150
提交評論