2022-2023學(xué)年寧夏回族自治區(qū)吳忠市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁
2022-2023學(xué)年寧夏回族自治區(qū)吳忠市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁
2022-2023學(xué)年寧夏回族自治區(qū)吳忠市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁
2022-2023學(xué)年寧夏回族自治區(qū)吳忠市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁
2022-2023學(xué)年寧夏回族自治區(qū)吳忠市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年寧夏回族自治區(qū)吳忠市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.設(shè)y=3+sinx,則y=()A.-cosxB.cosxC.1-cosxD.1+cosx

2.

3.∫cos3xdx=A.A.3sin3x+CB.-3sin3x+CC.(1/3)sin3x+CD.-(1/3)sin3x+C

4.

A.

B.1

C.2

D.+∞

5.設(shè)z=y2x,則等于().A.2xy2x-11

B.2y2x

C.y2xlny

D.2y2xlny

6.

7.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為()。A.

B.

C..

D.不能確定

8.A.A.

B.

C.

D.

9.

10.

11.設(shè)二元函數(shù)z=xy,則點P0(0,0)A.為z的駐點,但不為極值點B.為z的駐點,且為極大值點C.為z的駐點,且為極小值點D.不為z的駐點,也不為極值點

12.

13.

14.()。A.收斂且和為0

B.收斂且和為α

C.收斂且和為α-α1

D.發(fā)散

15.設(shè)在點x=1處連續(xù),則a等于()。A.-1B.0C.1D.216.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于().A.A.0B.π/4C.π/2D.π

17.

18.A.2xy+3+2yB.xy+3+2yC.2xy+3D.xy+319.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x

20.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上

A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值二、填空題(20題)21.

22.

23.

24.

25.冪級數(shù)的收斂半徑為______.

26.

27.28.設(shè),則y'=______.

29.

30.

31.微分方程dy+xdx=0的通解y=_____.32.f(x)=lnx,則f[f(x)]=__________。33.34.設(shè)y=e3x知,則y'_______。

35.

36.

37.

38.

39.設(shè)f(x)=xex,則f'(x)__________。

40.三、計算題(20題)41.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

42.求曲線在點(1,3)處的切線方程.43.證明:

44.

45.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.46.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則47.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.48.49.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.50.

51.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.52.

53.求微分方程y"-4y'+4y=e-2x的通解.

54.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達式;

(2)求S(x)的最大值.

55.

56.求微分方程的通解.57.將f(x)=e-2X展開為x的冪級數(shù).58.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.59.

60.四、解答題(10題)61.

62.

63.設(shè)z=z(x,y)由方程ez-xy2+x+z=0確定,求dz.64.

65.

66.

67.68.設(shè)z=x2y+2y2,求dz。69.

70.

五、高等數(shù)學(xué)(0題)71.設(shè)生產(chǎn)某產(chǎn)品利潤L(x)=5000+x一0.0001x2百元[單位:件],問生產(chǎn)多少件時利潤最大,最大利潤是多少?

六、解答題(0題)72.

參考答案

1.B

2.C

3.C

4.C

5.D本題考查的知識點為偏導(dǎo)數(shù)的運算.

z=y2x,若求,則需將z認定為指數(shù)函數(shù).從而有

可知應(yīng)選D.

6.A

7.B本題考查的知識點為定積分的幾何意義。由定積分的幾何意義可知應(yīng)選B。常見的錯誤是選C。如果畫個草圖,則可以避免這類錯誤。

8.C

9.C

10.C解析:

11.A

12.C解析:

13.A

14.C

15.C本題考查的知識點為函數(shù)連續(xù)性的概念。

由于y為分段函數(shù),x=1為其分段點。在x=1的兩側(cè)f(x)的表達式不同。因此討論y=f(x)在x=1處的連續(xù)性應(yīng)該利用左連續(xù)與右連續(xù)的概念。由于

當(dāng)x=1為y=f(x)的連續(xù)點時,應(yīng)有存在,從而有,即

a+1=2。

可得:a=1,因此選C。

16.C本題考查的知識點為羅爾定理的條件與結(jié)論.

由于y=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),且y|x=0=0=y|x=π,可知y=sinx在[0,π]上滿足羅爾定理,因此必定存在ξ∈(0,π),使y'|x=ξ=cosx|x=ξ=cosξ=0,從而應(yīng)有.

故知應(yīng)選C.

17.A解析:

18.C本題考查了一階偏導(dǎo)數(shù)的知識點。

19.D

20.B本題考查了函數(shù)的單調(diào)性的知識點,

因y'=ex+1/(1+x2)>0處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加。

21.31/16;2本題考查了函數(shù)的最大、最小值的知識點.

f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因為a>0,所以f"(0)<0,所以x=0是極值點.又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因為a>0,故當(dāng)x=0時,f(x)最大,即b=2;當(dāng)x=2時,f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=31/16.

22.1/(1-x)2

23.|x|

24.

25.3

26.33解析:

27.28.解析:本題考查的知識點為導(dǎo)數(shù)的四則運算.

29.1/6

30.31.

32.則33.e-1/234.3e3x

35.36.F(sinx)+C.

本題考查的知識點為不定積分的換元法.

37.3yx3y-13yx3y-1

解析:

38.-1

39.(1+x)ex40.

41.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價格上漲1%需求量減少2.5%42.曲線方程為,點(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

43.

44.

45.

列表:

說明

46.由等價無窮小量的定義可知

47.

48.49.由二重積分物理意義知

50.

51.函數(shù)的定義域為

注意

52.

53.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

54.

55.

56.

57.

58.

59.由一階線性微分方程通解公式有

60.

61.

62.

63.

64.

65.

66.

67.68.本題考查的知識點為計算二元函數(shù)全微分。

69.

70.解

71.L(x)=5000+x一0.0001x2L"(x)=1—0.0002x=0:x=5000;L""(x)=一0.0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論