版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年河南省商丘市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.
3.
4.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)
5.
6.設(shè)f(x)在點(diǎn)x0處取得極值,則()
A.f"(x0)不存在或f"(x0)=0
B.f"(x0)必定不存在
C.f"(x0)必定存在且f"(x0)=0
D.f"(x0)必定存在,不一定為零
7.A.A.發(fā)散B.絕對(duì)收斂C.條件收斂D.收斂性與k有關(guān)
8.函數(shù)f(x)=2x3-9x2+12x-3單調(diào)減少的區(qū)間為A.(-∞,1]B.[1,2]C.[2,+∞)D.[1,+∞)
9.
10.A.-1
B.0
C.
D.1
11.A.A.連續(xù)點(diǎn)
B.
C.
D.
12.
13.()。A.
B.
C.
D.
14.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是()。A.
B.
C.
D.
15.
16.曲線y=x-3在點(diǎn)(1,1)處的切線斜率為()
A.-1B.-2C.-3D.-4
17.設(shè)f(x)在x=2處可導(dǎo),且f'(2)=2,則等于().A.A.1/2B.1C.2D.4
18.點(diǎn)作曲線運(yùn)動(dòng)時(shí),“勻變速運(yùn)動(dòng)”指的是()。
A.aτ為常量
B.an為常量
C.為常矢量
D.為常矢量
19.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)()A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)
20.
二、填空題(20題)21.
22.
23.
24.
25.
26.
27.設(shè)sinx為f(x)的原函數(shù),則f(x)=______.
28.
29.
30.函數(shù)y=x3-2x+1在區(qū)間[1,2]上的最小值為_(kāi)_____.
31.
32.
33.
34.
35.曲線y=(x+1)/(2x+1)的水平漸近線方程為_(kāi)________.
36.
37.
38.
39.
40.
三、計(jì)算題(20題)41.
42.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
43.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
44.
45.證明:
46.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
47.求微分方程y"-4y'+4y=e-2x的通解.
48.
49.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
50.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
51.
52.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
53.求曲線在點(diǎn)(1,3)處的切線方程.
54.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
55.
56.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
57.
58.求微分方程的通解.
59.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
60.
四、解答題(10題)61.
62.
63.
64.
65.
66.
67.(本題滿分8分)計(jì)算
68.
69.
70.
五、高等數(shù)學(xué)(0題)71.
六、解答題(0題)72.
參考答案
1.D解析:
2.C
3.C
4.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來(lái)判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。
5.A
6.A若點(diǎn)x0為f(x)的極值點(diǎn),可能為兩種情形之一:(1)若f(x)在點(diǎn)x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點(diǎn)x=0處取得極小值,但f(x)=|x|在點(diǎn)x=0處不可導(dǎo),這表明在極值點(diǎn)處,函數(shù)可能不可導(dǎo)。故選A。
7.C
8.Bf(x)=2x3-9x2+12x-3的定義域?yàn)?-∞,+∞)
f'(x)=6x2-18x+12=6(x23x+2)=6(x-1)(x-2)。
令f'(x)=0得駐點(diǎn)x1=1,x2=2。
當(dāng)x<1時(shí),f'(x)>0,f(x)單調(diào)增加。
當(dāng)1<x<2時(shí),f'(x)<0,f(x)單調(diào)減少。
當(dāng)x>2時(shí),f'(x)>0,f(x)單調(diào)增加。因此知應(yīng)選B。
9.C解析:
10.C
11.C解析:
12.A
13.D
14.C
15.A解析:
16.C由導(dǎo)數(shù)的幾何意義知,若y=f(x)可導(dǎo),則曲線在點(diǎn)(x0,f(x0))處必定存在切線,且該切線的斜率為f"(x0)。由于y=x-3,y"=-3x-4,y"|x=1=-3,可知曲線y=x-3在點(diǎn)(1,1)處的切線斜率為-3,故選C。
17.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)在一點(diǎn)處的定義.
可知應(yīng)選B.
18.A
19.B由于f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加.因此選B.
20.A
21.1/3
22.7/5
23.
24.
25.
解析:
26.1
27.cosxcosx解析:本題考查的知識(shí)點(diǎn)為原函數(shù)的概念.
由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)'=cosx.
28.
29.F(sinx)+C本題考查的知識(shí)點(diǎn)為不定積分的換元法.
由于∫f(x)dx=F(x)+C,令u=sinx,則du=cosxdx,
30.0本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最小值問(wèn)題.
通常求解的思路為:
先求出連續(xù)函數(shù)f(x)在(a,b)內(nèi)的所有駐點(diǎn)x1,…,xk.
比較f(x1),f(x2),…,f(xk),f(a),f(b),其中最大(小)值即為f(x)在[a,b]上的最大(小)值,相應(yīng)的x即為,(x)在[a,b]上的最大(小)值點(diǎn).
由y=x3-2x+1,可得
Y'=3x2-2.
令y'=0得y的駐點(diǎn)為,所給駐點(diǎn)皆不在區(qū)間(1,2)內(nèi),且當(dāng)x∈(1,2)時(shí)有
Y'=3x2-2>0.
可知y=x3-2x+1在[1,2]上為單調(diào)增加函數(shù),最小值點(diǎn)為x=1,最小值為f(1)=0.
注:也可以比較f(1),f(2)直接得出其中最小者,即為f(x)在[1,2]上的最小值.
本題中常見(jiàn)的錯(cuò)誤是,得到駐點(diǎn)和之后,不討論它們是否在區(qū)間(1,2)內(nèi).而是錯(cuò)誤地比較
從中確定f(x)在[1,2]上的最小值.則會(huì)得到錯(cuò)誤結(jié)論.
31.
32.2x
33.
34.x+2y-z-2=0
35.y=1/2本題考查了水平漸近線方程的知識(shí)點(diǎn)。
36.1/4
37.
38.2/52/5解析:
39.
40.7
41.
42.
43.
44.
45.
46.函數(shù)的定義域?yàn)?/p>
注意
47.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
48.
49.
50.
51.
則
52.由等價(jià)無(wú)窮小量的定義可知
53.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
54.
列表:
說(shuō)明
55.
56.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
57.由一階線性微分方程通解公式有
58.
59.由二重積分物理意義知
60.
61.
62.
63.
64.
65.
66.
67.本題考查的知識(shí)點(diǎn)為計(jì)算反常積分.
計(jì)算反常積分應(yīng)依反常積分收斂性定義,將其轉(zhuǎn)化為定積分與極限兩種運(yùn)算.
68.
69.本題考查的知識(shí)點(diǎn)為求解-階線性微分方程.
將方程化為標(biāo)準(zhǔn)形式
求解一階線性微分方程??梢圆捎脙煞N解法:
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 疫情答題活動(dòng)策劃方案(3篇)
- 體育股內(nèi)部管理制度(3篇)
- 2026福建海峽人力資源股份有限公司漳州分公司招聘1人參考考試題庫(kù)及答案解析
- 2026北京積水潭醫(yī)院聊城醫(yī)院博士研究生引進(jìn)22人考試參考題庫(kù)及答案解析
- 2026廣西柳州市柳北區(qū)雅儒街道辦事處招聘公益性崗位人員1人筆試模擬試題及答案解析
- 2026年河北大學(xué)附屬醫(yī)院公開(kāi)選聘工作人員備考考試題庫(kù)及答案解析
- 電磁感應(yīng)補(bǔ)充題目
- 2026浙江浙建好房子裝飾科技有限公司招聘參考考試題庫(kù)及答案解析
- 2026西藏昌都市八宿縣發(fā)展改革和經(jīng)信商務(wù)局招聘專業(yè)技術(shù)人員1人考試備考題庫(kù)及答案解析
- 九江市公安局柴桑分局2026年度公開(kāi)招聘警務(wù)輔助人員備考考試題庫(kù)及答案解析
- 成都印鈔有限公司2026年度工作人員招聘參考題庫(kù)含答案
- GB/T 28743-2025污水處理容器設(shè)備通用技術(shù)條件
- 人工智能-歷史現(xiàn)在和未來(lái)
- 半導(dǎo)體廠務(wù)項(xiàng)目工程管理 課件 項(xiàng)目7 氣體的分類
- 安徽省亳州市2025屆高三上學(xué)期期末質(zhì)量檢測(cè)生物試卷(含答案)
- 2026年1月上海市春季高考數(shù)學(xué)試題卷(含答案及解析)
- 深度解析(2026)DZT 0064.45-1993地下水質(zhì)檢驗(yàn)方法 甘露醇-堿滴定法 測(cè)定硼
- 3.2地區(qū)產(chǎn)業(yè)結(jié)構(gòu)變化高中地理人教版選擇性必修2
- 2025年3D建模服務(wù)保密協(xié)議
- 各種挖機(jī)租賃合同范本
- 油料運(yùn)輸應(yīng)急預(yù)案
評(píng)論
0/150
提交評(píng)論