版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年浙江省溫州市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.
3.函數(shù)f(x)在x=x0處連續(xù)是f(x)在x=x0處極限存在的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既不充分也不必要條件
4.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量
5.A.A.
B.
C.
D.
6.
7.
8.
9.A.A.
B.
C.
D.
10.
11.
12.設(shè)y=2x3,則dy=()
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
13.過曲線y=xlnx上M0點(diǎn)的切線平行于直線y=2x,則切點(diǎn)M0的坐標(biāo)是().A.A.(1,0)B.(e,0)C.(e,1)D.(e,e)
14.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f(-1)=0,當(dāng)x<-1時(shí),f(x)<0;當(dāng)x>-1時(shí),f(x)>0.則下列結(jié)論肯定正確的是().
A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)15.設(shè)y=f(x)在(a,b)內(nèi)有二階導(dǎo)數(shù),且f"<0,則曲線y=f(x)在(a,b)內(nèi)().A.A.凹B.凸C.凹凸性不可確定D.單調(diào)減少16.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)17.A.A.2B.1C.1/2D.018.∫sin5xdx等于().
A.A.
B.
C.
D.
19.
20.過點(diǎn)(1,0,O),(0,1,O),(0,0,1)的平面方程為()A.A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
二、填空題(20題)21.過坐標(biāo)原點(diǎn)且與平面3x-7y+5z-12=0平行的平面方程為_________.
22.
23.ylnxdx+xlnydy=0的通解是______.
24.
25.
26.
27.設(shè)z=tan(xy-x2),則=______.28.29.空間直角坐標(biāo)系中方程x2+y2=9表示的曲線是________。30.31.
32.
33.函數(shù)f(x)=2x2+4x+2的極小值點(diǎn)為x=_________。
34.設(shè)y=lnx,則y'=_________。
35.
36.37.38.39.
40.
三、計(jì)算題(20題)41.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
42.
43.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.44.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.45.
46.求微分方程y"-4y'+4y=e-2x的通解.
47.求微分方程的通解.
48.
49.求曲線在點(diǎn)(1,3)處的切線方程.
50.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
51.
52.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.53.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
54.
55.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.56.57.58.證明:59.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則60.將f(x)=e-2X展開為x的冪級(jí)數(shù).四、解答題(10題)61.
62.
63.
64.65.66.67.
68.
69.將f(x)=sin3x展開為x的冪級(jí)數(shù),并指出其收斂區(qū)間。
70.
五、高等數(shù)學(xué)(0題)71.已知函數(shù)f(x)的定義域是[一1,1],則f(x一1)的定義域?yàn)?)。
A.[一1,1]B.[0,2]C.[0,1]D.[1,2]六、解答題(0題)72.
參考答案
1.B
2.C解析:
3.A函數(shù)f(x)在x=x0處連續(xù),則f(x)在x=x0處極限存在.但反過來卻不行,如函數(shù)f(x)=故選A。
4.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.
5.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo).
可知應(yīng)選C.
6.C
7.D
8.C解析:
9.B本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.
因此選B.
10.A
11.A
12.B
13.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.
由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點(diǎn)x0處可導(dǎo),則曲線y=f(x)在點(diǎn)(x0,f(x0))處必定存在切線,且切線的斜率為f'(x0).
由于y=xlnx,可知
y'=1+lnx,
切線與已知直線y=2x平行,直線的斜率k1=2,可知切線的斜率k=k1=2,從而有
1+lnx0=2,
可解得x0=e,從而知
y0=x0lnx0=elne=e.
故切點(diǎn)M0的坐標(biāo)為(e,e),可知應(yīng)選D.
14.C本題考查的知識(shí)點(diǎn)為極值的第-充分條件.
由f(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時(shí)f(x)<0;當(dāng)x>-1時(shí),
f(x)>1,由極值的第-充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.
15.A本題考查的知識(shí)點(diǎn)為利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.
由于在(a,b)區(qū)間內(nèi)f"(x)<0,可知曲線y=f(x)在(a,b)內(nèi)為凹的,因此選A.
16.A
17.D
18.A本題考查的知識(shí)點(diǎn)為不定積分的換元積分法.
,可知應(yīng)選D.
19.C
20.A
21.3x-7y+5z=0本題考查了平面方程的知識(shí)點(diǎn)。已知所求平面與3x-7y+5z-12=0平行,則其法向量為(3,-7,5),故所求方程為3(x-0)+(-7)(y-0)+5(z-0)=0,即3x-7y+5z=0.
22.本題考查了改變積分順序的知識(shí)點(diǎn)。
23.(lnx)2+(lny)2=C
24.2
25.eab26.由可變上限積分求導(dǎo)公式可知
27.本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
z=tan(xy-x2),
28.29.以O(shè)z為軸的圓柱面方程。F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,方程x2+y2=32=0表示母線平行Oz軸的圓柱面方程。30.2.
本題考查的知識(shí)點(diǎn)為二次積分的計(jì)算.
由相應(yīng)的二重積分的幾何意義可知,所給二次積分的值等于長(zhǎng)為1,寬為2的矩形的面積值,故為2.或由二次積分計(jì)算可知31.2xsinx2;本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo).
32.
解析:
33.-1
34.1/x
35.
解析:36.本題考查的知識(shí)點(diǎn)為重要極限公式。37.0
38.1.
本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.
39.
40.(e-1)2
41.
42.由一階線性微分方程通解公式有
43.
44.由二重積分物理意義知
45.
46.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
47.
48.
49.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
50.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 流通環(huán)節(jié)培訓(xùn)材料
- 流行舞舞蹈培訓(xùn)課件
- 流程的培訓(xùn)教學(xué)課件
- 流感相關(guān)知識(shí)培訓(xùn)
- 2024-2025學(xué)年陜西省部分學(xué)校高二下學(xué)期5月月考?xì)v史試題(解析版)
- 2024-2025學(xué)年山東省日照市高一下學(xué)期期中考試歷史試題(解析版)
- 2024-2025學(xué)年江蘇省淮安市協(xié)作體高二下學(xué)期期中考試歷史試題(解析版)
- 2026年企業(yè)環(huán)保責(zé)任與ISO14001環(huán)境管理體系模擬自測(cè)題
- 2026年企業(yè)培訓(xùn)師考試企業(yè)內(nèi)訓(xùn)技能及人力資源開發(fā)利用題目訓(xùn)練
- 2026年現(xiàn)代物流管理與實(shí)務(wù)操作題庫(kù)
- 產(chǎn)前篩查培訓(xùn)課件
- 交期縮短計(jì)劃控制程序
- 神經(jīng)指南:腦血管造影術(shù)操作規(guī)范中國(guó)專家共識(shí)
- 物理必修一綜合測(cè)試題
- 文化區(qū)發(fā)展策略研究-以香港西九龍文化區(qū)和牛棚藝術(shù)村為例
- 廣東二甲以上醫(yī)院 共152家
- 電力溫控行業(yè)研究報(bào)告
- GB/T 4358-1995重要用途碳素彈簧鋼絲
- GB/T 35263-2017紡織品接觸瞬間涼感性能的檢測(cè)和評(píng)價(jià)
- 2023年1月浙江首考高考英語(yǔ)試卷真題及答案(含聽力原文mp3+作文范文)
- (優(yōu)質(zhì)課件)人教版小學(xué)五年級(jí)上冊(cè)數(shù)學(xué)《列方程解應(yīng)用題》課件3
評(píng)論
0/150
提交評(píng)論