2022-2023學(xué)年福建省漳州市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022-2023學(xué)年福建省漳州市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022-2023學(xué)年福建省漳州市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022-2023學(xué)年福建省漳州市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022-2023學(xué)年福建省漳州市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年福建省漳州市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.設(shè)z=ln(x2+y),則等于()。A.

B.

C.

D.

2.

3.

4.設(shè)y=e-3x,則dy=A.e-3xdx

B.-e-3xdx

C.-3e-3xdx

D.3e-3xdx

5.

6.

A.

B.1

C.2

D.+∞

7.

8.

9.A.A.5B.3C.-3D.-510.為二次積分為()。A.

B.

C.

D.

11.

12.

13.

14.二元函數(shù)z=x3-y3+3x2+3y2-9x的極小值點(diǎn)為()

A.(1,0)B.(1,2)C.(-3,0)D.(-3,2)

15.

16.

17.設(shè)f(x)在點(diǎn)x0處連續(xù),則下面命題正確的是()A.A.

B.

C.

D.

18.

19.

20.A.A.

B.

C.

D.

二、填空題(20題)21.

22.

23.

24.

25.26.27.28.冪級(jí)數(shù)的收斂半徑為_(kāi)_____.

29.

30.31.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。

32.

33.

34.已知當(dāng)x→0時(shí),-1與x2是等價(jià)無(wú)窮小,則a=________。

35.

36.

37.

38.

39.當(dāng)x=1時(shí),f(x)=x3+3px+q取到極值(其中q為任意常數(shù)),則p=______.

40.微分方程y'=0的通解為_(kāi)_____.三、計(jì)算題(20題)41.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.42.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).43.44.

45.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).

46.求微分方程y"-4y'+4y=e-2x的通解.

47.

48.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.49.50.求曲線在點(diǎn)(1,3)處的切線方程.

51.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

52.求微分方程的通解.53.證明:54.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

55.

56.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.57.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.58.

59.60.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則四、解答題(10題)61.求函數(shù)y=xex的極小值點(diǎn)與極小值。

62.

63.求由曲線y=1眥過(guò)點(diǎn)(e,1)的切線、x軸及該曲線所圍成平面圖形D的面積A及該圖形繞y軸旋轉(zhuǎn)一周所生成的旋轉(zhuǎn)體的體積Vy。

64.

65.66.67.68.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.69.求直線y=2x+1與直線x=0,x=1和y=0所圍平面圖形的面積,并求該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積。70.五、高等數(shù)學(xué)(0題)71.

在t=1處的切線方程_______。

六、解答題(0題)72.

參考答案

1.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。

2.B

3.B

4.C

5.A解析:

6.C

7.D解析:

8.D解析:

9.Cf(x)為分式,當(dāng)x=-3時(shí),分式的分母為零,f(x)沒(méi)有定義,因此

x=-3為f(x)的間斷點(diǎn),故選C。

10.A本題考查的知識(shí)點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分。由于在極坐標(biāo)系下積分區(qū)域D可以表示為

故知應(yīng)選A。

11.C解析:

12.A

13.A

14.A對(duì)于點(diǎn)(-3,0),A=-18+6=-12,B=0,C=6,B2-AC=72>0,故此點(diǎn)為非極值點(diǎn).對(duì)于點(diǎn)(-3,2),A=-12,B=0,C=-12+6=-6,B2-AC=-72<0,故此點(diǎn)為極大值點(diǎn).對(duì)于點(diǎn)(1,0),A=12,B=0,C=6,B2-AC=-72<0,故此點(diǎn)為極小值點(diǎn).對(duì)于點(diǎn)(1,2),A=12=0,C=-6,B2-AC=72>0,故此點(diǎn)為非極值點(diǎn).

15.C

16.D

17.C本題考查的知識(shí)點(diǎn)有兩個(gè):連續(xù)性與極限的關(guān)系;連續(xù)性與可導(dǎo)的關(guān)系.

連續(xù)性的定義包含三個(gè)要素:若f(x)在點(diǎn)x0處連續(xù),則

(1)f(x)在點(diǎn)x0處必定有定義;

(2)必定存在;

(3)

由此可知所給命題C正確,A,B不正確.

注意連續(xù)性與可導(dǎo)的關(guān)系:可導(dǎo)必定連續(xù);連續(xù)不一定可導(dǎo),可知命題D不正確.故知,應(yīng)選C.

本題常見(jiàn)的錯(cuò)誤是選D.這是由于考生沒(méi)有正確理解可導(dǎo)與連續(xù)的關(guān)系.

若f(x)在點(diǎn)x0處可導(dǎo),則f(x)在點(diǎn)x0處必定連續(xù).

但是其逆命題不成立.

18.A

19.D

20.C本題考查的知識(shí)點(diǎn)為微分運(yùn)算.

因此選C.

21.

22.

23.

24.2

25.

26.

本題考查的知識(shí)點(diǎn)為初等函數(shù)的求導(dǎo)運(yùn)算.

本題需利用導(dǎo)數(shù)的四則運(yùn)算法則求解.

本題中常見(jiàn)的錯(cuò)誤有

這是由于誤將sin2認(rèn)作sinx,事實(shí)上sin2為-個(gè)常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即

請(qǐng)考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.

27.

28.

29.

30.本題考查了交換積分次序的知識(shí)點(diǎn)。31.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx

32.

33.

34.當(dāng)x→0時(shí),-1與x2等價(jià),應(yīng)滿足所以當(dāng)a=2時(shí)是等價(jià)的。

35.

36.

37.38.2.

本題考查的知識(shí)點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.

39.-1f'(x)=3x2+3p,f'(1)=3十3p=0,所以p=-1.40.y=C1本題考查的知識(shí)點(diǎn)為微分方程通解的概念.

微分方程為y'=0.

dy=0.y=C.

41.

42.

列表:

說(shuō)明

43.

44.由一階線性微分方程通解公式有

45.

46.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

47.

48.函數(shù)的定義域?yàn)?/p>

注意

49.50.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

51.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

52.

53.

54.

55.56.由二重積分物理意義知

57.

58.

59.

60.由等價(jià)無(wú)窮小量的定義可知

61.

62.

63.

64.

65.

66.

67.68.由二重積分物理意義知

69.解:設(shè)所圍圖形面積為A,則

70.本題考查的知識(shí)點(diǎn)為兩個(gè):定積分表示-個(gè)確定的數(shù)值;計(jì)算定積分.

這是解題的關(guān)鍵!為了能求出A,可考慮將左端也轉(zhuǎn)化為A的表達(dá)式,為此將上式兩端在[0,1]上取定積分,可得

得出A的方程,可解出A,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論