版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年江蘇省無(wú)錫市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.曲線y=x2+5x+4在點(diǎn)(-1,0)處切線的斜率為
A.2B.-2C.3D.-3
2.
3.()。A.
B.
C.
D.
4.
5.設(shè)f(x)=e3x,則在x=0處的二階導(dǎo)數(shù)f"(0)=A.A.3B.6C.9D.9e
6.
7.
8.
9.函數(shù)f(x)在點(diǎn)x=x0處連續(xù)是f(x)在x0處可導(dǎo)的A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件
10.微分方程y"-y=ex的一個(gè)特解應(yīng)具有的形式為(下列各式中α、b為常數(shù))。A.aex
B.axex
C.aex+bx
D.axex+bx
11.A.A.e2/3
B.e
C.e3/2
D.e6
12.
13.A.
B.
C.
D.
14.若x→x0時(shí),α(x)、β(x)都是無(wú)窮小(β(x)≠0),則x→x0時(shí),α(x)/β(x)A.A.為無(wú)窮小B.為無(wú)窮大C.不存在,也不是無(wú)窮大D.為不定型
15.
A.0B.2C.4D.816.A.A.導(dǎo)數(shù)存在,且有f(a)=一1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值17.設(shè)f'(x0)=1,則等于().A.A.3B.2C.1D.1/2
18.
19.
20.設(shè)y=sin2x,則y'等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x二、填空題(20題)21.設(shè)z=xy,則出=_______.
22.微分方程y'=2的通解為__________。
23.
24.
25.
26.
27.
28.29.
30.
31.
32.∫(x2-1)dx=________。33.設(shè)區(qū)域D由曲線y=x2,y=x圍成,則二重積分34.設(shè)函數(shù)y=y(x)由方程x2y+y2x+2y=1確定,則y'=______.35.
36.
37.38.
39.
40.二元函數(shù)z=xy2+arcsiny2,則=______.三、計(jì)算題(20題)41.
42.證明:43.44.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
45.
46.求微分方程的通解.47.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則48.
49.50.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).51.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.52.
53.求微分方程y"-4y'+4y=e-2x的通解.
54.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
55.
56.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
57.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.58.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.59.將f(x)=e-2X展開為x的冪級(jí)數(shù).60.求曲線在點(diǎn)(1,3)處的切線方程.四、解答題(10題)61.
62.
63.
64.
65.
66.
67.
68.69.
70.
五、高等數(shù)學(xué)(0題)71.
,則
=__________。
六、解答題(0題)72.
參考答案
1.C解析:
2.B
3.D
4.A
5.Cf(x)=e3x,f'(x)=3e3x,f"(x)=9e3x,f"(0)=9,因此選C。
6.B
7.A解析:
8.C解析:
9.B由可導(dǎo)與連續(xù)的關(guān)系:“可導(dǎo)必定連續(xù),連續(xù)不一定可導(dǎo)”可知,應(yīng)選B。
10.B方程y"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1。
方程y"-y=ex中自由項(xiàng)f1(x)=ex,α=1是特征單根,故應(yīng)設(shè)定y*=αxex,因此選B。
11.D
12.D
13.B
14.D
15.A解析:
16.A本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
17.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
由題設(shè)知f'(x0)=1,又由題設(shè)條件知
可知應(yīng)選B.
18.B解析:
19.D解析:
20.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t.
Y=sin2x,
則y'=cos(2x)·(2x)'=2cos2x.
可知應(yīng)選D.
21.
22.y=2x+C
23.
24.
25.1/200
26.
27.2
28.
29.本題考查了改變積分順序的知識(shí)點(diǎn)。
30.00解析:
31.
32.33.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.積分區(qū)域D可以表示為:0≤x≤1,x2≤y≤x,因此
34.
;本題考查的知識(shí)點(diǎn)為隱函數(shù)的求導(dǎo).
將x2y+y2x+2y=1兩端關(guān)于x求導(dǎo),(2xy+x2y')+(2yy'x+y2)+2y'=0,(x2+2xy+2)y'+(2xy+y2)=0,因此y'=
35.
36.(1/2)x2-2x+ln|x|+C37.1
38.3/2本題考查了函數(shù)極限的四則運(yùn)算的知識(shí)點(diǎn)。
39.(01]40.y2
;本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
只需將y,arcsiny2認(rèn)作為常數(shù),則
41.
42.
43.
44.
45.
46.47.由等價(jià)無(wú)窮小量的定義可知
48.
則
49.
50.
列表:
說(shuō)明
51.由二重積分物理意義知
52.由一階線性微分方程通解公式有
53.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
54.
55.
56.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
57.
58.函數(shù)的定義域?yàn)?/p>
注意
59.60.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)保工程師面試題及答案公開課
- 采購(gòu)管理崗面試題集及參考答案
- 軟件測(cè)試工程師招聘考試題目集
- 2025年AI客服系統(tǒng)建設(shè)可行性研究報(bào)告
- 2025年碳中和產(chǎn)業(yè)園區(qū)建設(shè)項(xiàng)目可行性研究報(bào)告
- 2025年污水處理與再利用項(xiàng)目可行性研究報(bào)告
- 2025年自主品牌家電產(chǎn)品創(chuàng)新項(xiàng)目可行性研究報(bào)告
- 2025年文化藝術(shù)展館建設(shè)項(xiàng)目可行性研究報(bào)告
- 2026年西安工商學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)含答案詳解
- 2026年安慶職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)考試題庫(kù)及完整答案詳解1套
- 2025 小學(xué)二年級(jí)數(shù)學(xué)上冊(cè)解決問(wèn)題審題方法課件
- 老年患者術(shù)后加速康復(fù)外科(ERAS)實(shí)施方案
- 2024-2025學(xué)年廣州市越秀區(qū)八年級(jí)上學(xué)期期末歷史試卷(含答案)
- 2025年餐飲與管理考試題及答案
- 2025事業(yè)單位考試公共基礎(chǔ)知識(shí)測(cè)試題及答案
- M蛋白血癥的護(hù)理
- 孔隙率測(cè)定方法
- 2025 初中中國(guó)歷史一二九運(yùn)動(dòng)的爆發(fā)課件
- 上消化道出血疾病宣教
- 2025年國(guó)家開放大學(xué)《數(shù)據(jù)分析與統(tǒng)計(jì)》期末考試備考題庫(kù)及答案解析
- 《算法設(shè)計(jì)與分析》期末考試試卷及答案
評(píng)論
0/150
提交評(píng)論