初中數(shù)學(xué)證明題解題技巧總結(jié)_第1頁
初中數(shù)學(xué)證明題解題技巧總結(jié)_第2頁
初中數(shù)學(xué)證明題解題技巧總結(jié)_第3頁
初中數(shù)學(xué)證明題解題技巧總結(jié)_第4頁
初中數(shù)學(xué)證明題解題技巧總結(jié)_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

WORD(可編輯版本)———初中數(shù)學(xué)證明題解題技巧總結(jié)幾何證明題重點考察的是學(xué)生的邏輯思維能力,能通過嚴密的“因為”、“所以”邏輯將條件一步步轉(zhuǎn)化為所要證明的結(jié)論。下面是我為大家整理的關(guān)于初中數(shù)學(xué)證明題解題技巧總結(jié),希望對您有所援助!

初中數(shù)學(xué)證明題技巧

人說幾何很困難,難點就在幫助線。初中數(shù)學(xué)幾何證明題幫助線怎么畫幫助線,如何添?把握定理和概念。還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗。圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長縮短可試驗。三角形中兩中點,連接則成中位線。三角形中有中線,延長中線等中線。平行四邊形出現(xiàn),對稱中心等分點。梯形里面作高線,平移一腰試試看。平行移動對角線,補成三角形常見。證相似,比線段,添線平行成習慣。等積式子比例換,尋找線段很關(guān)鍵。

斜邊上面作高線,比例中項一大片。半徑與弦長計算,弦心距來中間站圓上若有一切線,切點圓心半徑連。切線長度的計算,勾股定理最便利。要想證明是切線,半徑垂線細心辨。是直徑,成半圓,想成直角徑連弦。弧有中點圓心連,垂徑定理要記全。圓周角邊兩條弦,直徑和弦端點連。弦切角邊切線弦,同弧對角等找完。要想作個外接圓,各邊作出中垂線。還要作個內(nèi)接圓,內(nèi)角平分線夢圓。如果遇到相交圓,不要忘作公共弦。內(nèi)外相切的兩圓,經(jīng)過切點公切線。若是添上連心線,切點肯定在上面。要作等角添個圓,證明題目少困難。幫助線,是虛線,畫圖注意勿改變。假如圖形較分散,對稱旋轉(zhuǎn)去試驗?;咀鲌D很關(guān)鍵,平時精通要熟練。解題還要多心眼,經(jīng)??偨Y(jié)方法顯。切勿盲目亂添線,方法靈活應(yīng)多變。分析綜合方法選,困難再多也會減。虛心勤學(xué)加苦練,成績上升成直線。幾何證題難不難,關(guān)鍵常在幫助線;知中點、作中線,中線處長加倍看;

底角倍半角分線,有時也作處長線

公共角、公共邊,隱含條件須挖掘;全等圖形多變換,旋轉(zhuǎn)平移加折疊;中位線、常相連,出現(xiàn)平行就好辦;四邊形、對角線,比例相似平行線;梯形問題好解決,平移腰、作高線;兩腰處長義一點,亦可平移對角線;正余弦、正余切,有了直角就便利;特殊角、特殊邊,作出垂線就解決;實際問題莫要慌,數(shù)學(xué)建模幫你忙;圓中問題也不難,下面我們漸漸談;弦心距、要垂弦,遇到直徑周角連;切點圓心緊相連,切線常把半徑添;兩圓相切公共線,兩圓相交公共弦;切割線,連結(jié)弦,兩圓三圓連心線;基本圖形要熟練,復(fù)雜圖形多分解;以上規(guī)律屬一般,靈活應(yīng)用才便利。

初中幾何題解題的方法

一要審題。

很多學(xué)生在把一個題目讀完后,還沒有弄清楚題目講的是什么意思,題目讓你求證的是什么都不知道,這特別不可取。我們應(yīng)該逐個條件的讀,給的條件有什么用,在腦海中打個問號,再對應(yīng)圖形來對號入座,結(jié)論從什么地方入手去尋找,也在圖中找到位置。

二要記。

這里的記有兩層意思。第一層意思是要標記,在讀題的時候每個條件,你要在所給的圖形中標記出來。如給出對邊相等,就用邊相等的符號來表示。第二層意思是要牢記,題目給出的條件不僅要標記,還要記在腦海中,做到不看題,就可以把題目復(fù)述出來。

三要引申。

難度大一點的題目往往把一些條件隱藏起來,所以我們要會引申,那么這里的引申就需要平時的積累,平時在課堂上學(xué)的基本知識點精通穩(wěn)固,平時訓(xùn)練的.一些特殊圖形要熟記,在審題與記的時候要想到由這些條件你還可以得到哪些結(jié)論,然后在圖形旁邊標注,雖然有些條件在證明時可能用不上,但是這樣長期的積累,便于以后難題的學(xué)習。

四要分析綜合法。

分析綜合法也就是要逆向推理,從題目要你證明的結(jié)論出發(fā)往回推理??纯唇Y(jié)論是要證明角相等,還是邊相等,等等,如證明角相等的方法有(1.對頂角相等2.平行線里同位角相等、內(nèi)錯角相等3.余角、補角定理4.角平分線定義5.等腰三角形6.全等三角形的對應(yīng)角等等方法。)結(jié)合題意選出其中的一種方法,然后再考慮用這種方法證明還缺少哪些條件,把題目轉(zhuǎn)換成證明其他的結(jié)論,通常缺少的條件會在第三步引申出的條件和題目中出現(xiàn),這時再把這些條件綜合在一起,很條理的寫出證明過程。

五要歸納總結(jié)。

很多同學(xué)把一個題做出來,長長的松了一口氣,接下來去做其他的,這個也是不可取的,應(yīng)該花上幾分鐘的時間,回過頭來找找所用的定理、公理、定義,重新審視這個題,總結(jié)這個題的解題思路,往后出現(xiàn)同樣類型的題該怎樣入手。

初中證明題解題技巧

1.弄清題意

此為“文字型”數(shù)學(xué)證明題,既沒有圖形,也無直觀的已知與求證。如何弄清題意呢?根據(jù)命題的定義可知,命題由條件與結(jié)論兩部分組成,因此區(qū)分命題的條件與結(jié)論至關(guān)重要,是解題成敗的關(guān)鍵。命題可以改寫成“如果………..,那么……….”的形式,其中“如果………..”就是命題的條件,“那么…….”就是命題的結(jié)論,據(jù)此對題目進行改寫:如果在等腰三角形中分別作兩底角的平分線,那么這兩條平分線長度相等。于是題目的意思就很清晰了,就是在等腰三角形中作兩底角平分線,然后根據(jù)已知的條件去求證這兩條平分線相等。這樣題目要求我們做什么就一目了然了!

2.根據(jù)題意,畫出圖形。

圖形對解決證明題,能起到直觀形象的提示,所以畫圖因盡量與題意相符合。并且把題中已知的條件,能標在圖形上的盡量標在圖形上。

3.根據(jù)題意與圖形,用數(shù)學(xué)的語言與符號寫出已知和求證。

眾所周知,命題的條件已知,命題的結(jié)論求證,但要特別注意的是,已知、求證務(wù)必用數(shù)學(xué)的語言和符號來表示。

已知:如圖(1),在△ABC中,AB=AC,BD、CE分別是△ABC的角平分線。

求證:BD=CE

4.分析已知、求證與圖形,探索證明的思路。

對于證明題,有三種思考方式:

(1)正向思維。對于一般簡易的題目,我們正向思考,輕而易舉可以做出,這里就不詳盡敘述了。

(2)逆向思維。顧名思義,就是從相反的方向思考問題。運用逆向思維解題,能使學(xué)生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學(xué)生的解題思路。這種方法是推薦學(xué)生一定要精通的。在初中數(shù)學(xué)中,逆向思維是特別重要的思維方式,在證明題中體現(xiàn)的更加明顯,數(shù)學(xué)這門學(xué)科知識點很少,關(guān)鍵是怎樣運用,對于初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經(jīng)上初三了,幾何學(xué)的不好,做題沒有思路,那你一定要注意了:從現(xiàn)在開始,總結(jié)做題方法。同學(xué)們認真讀完一道題的題干后,不知道從何入手,建議你從結(jié)論出發(fā)。例如:可以有這樣的思考過程:要證明某兩條邊相等,那么結(jié)合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結(jié)合所給的條件,看還缺少什么條件需要證明,證明這個條件又需要怎樣做幫助線,這樣思考下去……這樣我們就找到了解題的思路,然后把過程正著寫出來就可以了。這是特別好用的方法,同學(xué)們一定要試一試。

(3)正逆結(jié)合。對于從結(jié)論很難分析出思路的題目,同學(xué)們可以結(jié)合結(jié)論和已知條件認真的分析,初中數(shù)學(xué)中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們?nèi)切文尺呏悬c,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結(jié)合,戰(zhàn)無不勝。

常用的數(shù)學(xué)思想方法

1、數(shù)形結(jié)合思想:就是根據(jù)數(shù)學(xué)問題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義,使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來,并充分利用這種結(jié)合,尋求解體思路,使問題得到解決。

2、聯(lián)系與轉(zhuǎn)化的思想:事物之間是相互聯(lián)系、相互制約的,是可以相互轉(zhuǎn)化的。數(shù)學(xué)學(xué)科的各部分之間也是相互聯(lián)系,可以相互轉(zhuǎn)化的。在解題時,如果能恰當處理它們之間的相互轉(zhuǎn)化,往往可以化難為易,化繁為簡。如:代換轉(zhuǎn)化、已知與未知的轉(zhuǎn)化、特殊與一般的轉(zhuǎn)化、具體與抽象的轉(zhuǎn)化、部分與整體的轉(zhuǎn)化、動與靜的轉(zhuǎn)化等等。

3、分類談?wù)摰乃枷耄涸跀?shù)學(xué)中,我們常常需要根據(jù)研究對象性質(zhì)的差異,分各種不同狀況予以考查,這種分類思考的方法,是一種重要的數(shù)學(xué)思想方法,同時也是一種重要的解題策略。

4、待定系數(shù)法:當我們所研究的數(shù)學(xué)式子具有某種特定形式時,要確定它,只要求出式子中待確定的字母得值就可以了。為此,把已知條件代入這個待定形式的式子中,往往會得到含待定字母的方程或方程組,然后解這個方程或方程組就使問題得到解決。

5、配方法:就是把一個代數(shù)式設(shè)法構(gòu)造成平方式,然后再進行所需要的變化。配方法是初中代數(shù)中重要的變形技巧,配方法在分解因式、解方程、談?wù)摱魏瘮?shù)等問題,都有重要的作用。

6、換元法:在解題過程中,把某個或某些字母的式子作為一個整體,用一個新的字母表示,以便進一步解決問題的一種方法。換元法可以把一個較為復(fù)雜的式子化簡,把問題歸結(jié)為比原來更為基本的問題,從而達到化繁為簡,化難為易的目的。

7、分析法:在研究或證明一個命題時,又結(jié)論向已知條件追溯,既從結(jié)論開始,推求它成立的充分條件,這個條件的成立還不明顯,則再把它當作結(jié)論,進一步研究它成立的充分條件,直至達到已知條件為止,從而使命題得到證明。這種思維過程通常稱為“執(zhí)果尋因”。

8、綜合法:在研究或證明命題時,如果推理的方向是從已知條件開始,逐步推導(dǎo)得到結(jié)論,這種

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論