2023年甘肅省白銀市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2023年甘肅省白銀市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2023年甘肅省白銀市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2023年甘肅省白銀市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2023年甘肅省白銀市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年甘肅省白銀市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.A.A.1

B.1/m2

C.m

D.m2

2.

A.f(x)

B.f(x)+C

C.f/(x)

D.f/(x)+C

3.

4.函數(shù)f(x)=5x在區(qū)間[-1,1]上的最大值是A.A.-(1/5)B.0C.1/5D.5

5.

6.

7.A.有一個(gè)拐點(diǎn)B.有兩個(gè)拐點(diǎn)C.有三個(gè)拐點(diǎn)D.無(wú)拐點(diǎn)8.等于().A.A.2B.1C.1/2D.0

9.A.2x

B.3+2x

C.3

D.x2

10.微分方程y"-y=ex的一個(gè)特解應(yīng)具有的形式為(下列各式中α、b為常數(shù))。A.aex

B.axex

C.aex+bx

D.axex+bx

11.

12.搖篩機(jī)如圖所示,已知O1B=O2B=0.4m,O1O2=AB,桿O1A按

規(guī)律擺動(dòng),(式中∮以rad計(jì),t以s計(jì))。則當(dāng)t=0和t=2s時(shí),關(guān)于篩面中點(diǎn)M的速度和加速度就散不正確的一項(xiàng)為()。

A.當(dāng)t=0時(shí),篩面中點(diǎn)M的速度大小為15.7cm/s

B.當(dāng)t=0時(shí),篩面中點(diǎn)M的法向加速度大小為6.17cm/s2

C.當(dāng)t=2s時(shí),篩面中點(diǎn)M的速度大小為0

D.當(dāng)t=2s時(shí),篩面中點(diǎn)M的切向加速度大小為12.3cm/s2

13.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解

14.

15.

16.A.A.

B.

C.

D.

17.

A.

B.

C.

D.

18.

19.

20.若f(x)為[a,b]上的連續(xù)函數(shù),()。A.小于0B.大于0C.等于0D.不確定二、填空題(20題)21.

22.23.

24.

25.26.

27.

28.曲線f(x)=x/x+2的鉛直漸近線方程為_(kāi)_________。

29.

30.設(shè)函數(shù)z=f(x,y)存在一階連續(xù)偏導(dǎo)數(shù),則全微分出dz=______.

31.

32.

33.

34.

35.

36.37.過(guò)M0(1,-1,2)且垂直于平面2x-y+3z-1=0的直線方程為.

38.設(shè)f'(1)=2.則

39.40.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。三、計(jì)算題(20題)41.求曲線在點(diǎn)(1,3)處的切線方程.

42.求微分方程y"-4y'+4y=e-2x的通解.

43.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

44.

45.

46.47.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則48.證明:49.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).50.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

51.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

52.

53.54.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).55.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

56.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.57.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

58.

59.60.求微分方程的通解.四、解答題(10題)61.

62.

63.

64.

65.

66.設(shè)函數(shù)y=xsinx,求y'.

67.

68.一象限的封閉圖形.

69.

70.五、高等數(shù)學(xué)(0題)71.

六、解答題(0題)72.

參考答案

1.D本題考查的知識(shí)點(diǎn)為重要極限公式或等價(jià)無(wú)窮小代換.

解法1由可知

解法2當(dāng)x→0時(shí),sinx~x,sinmx~mx,因此

2.A由不定積分的性質(zhì)“先積分后求導(dǎo),作用抵消”可知應(yīng)選A.

3.C

4.Df(x)=5x,f'(x)=5xln5>0,可知f(x)在[-1,1]上單調(diào)增加,最大值為f(1)=5,所以選D。

5.B

6.C

7.D

8.D本題考查的知識(shí)點(diǎn)為重要極限公式與無(wú)窮小性質(zhì).

注意:極限過(guò)程為x→∞,因此

不是重要極限形式!由于x→∞時(shí),1/x為無(wú)窮小,而sin2x為有界變量.由無(wú)窮小與有界變量之積仍為無(wú)窮小的性質(zhì)可知

9.A由導(dǎo)數(shù)的基本公式及四則運(yùn)算法則,有故選A.

10.B方程y"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1。

方程y"-y=ex中自由項(xiàng)f1(x)=ex,α=1是特征單根,故應(yīng)設(shè)定y*=αxex,因此選B。

11.C

12.D

13.B如果y1,y2這兩個(gè)特解是線性無(wú)關(guān)的,即≠C,則C1y1+C2y2是其方程的通解。現(xiàn)在題設(shè)中沒(méi)有指出是否線性無(wú)關(guān),所以可能是通解,也可能不是通解,故選B。

14.B

15.B

16.C本題考查的知識(shí)點(diǎn)為微分運(yùn)算.

因此選C.

17.B本題考查的知識(shí)點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。

18.D

19.D

20.C

21.(1/2)x2-2x+ln|x|+C

22.3xln3

23.

24.1/21/2解析:25.5.

本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).

解法1

解法2

26.

本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.

可分離變量方程求解的一般方法為:

(1)變量分離;

(2)兩端積分.

27.e-6

28.x=-2

29.30.依全微分存在的充分條件知

31.

32.(12)(01)

33.

34.(-22)(-2,2)解析:

35.

解析:

36.37.

本題考查的知識(shí)點(diǎn)為直線方程的求解.

由于所求直線與平面垂直,因此直線的方向向量s可取為已知平面的法向量n=(2,-1,3).

由直線的點(diǎn)向式方程可知所求直線方程為

38.11解析:本題考查的知識(shí)點(diǎn)為函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義.

由于f'(1)=2,可知

39.本題考查的知識(shí)點(diǎn)為換元積分法.40.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx41.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

42.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

43.

44.45.由一階線性微分方程通解公式有

46.47.由等價(jià)無(wú)窮小量的定義可知

48.

49.50.函數(shù)的定義域?yàn)?/p>

注意

51.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

52.

53.

54.

列表:

說(shuō)明

55.

56.由二重積分物理意義知

57.

58.

59.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論