版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則等于()A. B. C. D.32.已知直線,平面,且,下列條件中能推出的是()A. B. C. D.與相交3.已知,則的值等于()A. B. C. D.4.菱形ABCD,E是AB邊靠近A的一個三等分點,DE=4,則菱形ABCD面積最大值為()A.36 B.18 C.12 D.95.若,則下列不等式成立的是()A. B.C. D.6.在正方體中,點是四邊形的中心,關(guān)于直線,下列說法正確的是()A. B.C.平面 D.平面7.下面的程序運行后,輸出的值是()A.90 B.29 C.13 D.548.的內(nèi)角,,的對邊分別為,,.已知,則()A. B. C. D.9.設(shè)函數(shù),則()A.在單調(diào)遞增,且其圖象關(guān)于直線對稱B.在單調(diào)遞增,且其圖象關(guān)于直線對稱C.在單調(diào)遞減,且其圖象關(guān)于直線對稱D.在單調(diào)遞增,且其圖象關(guān)于直線對稱10.已知,且,,這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則()A.7 B.6 C.5 D.9二、填空題:本大題共6小題,每小題5分,共30分。11.若角是第四象限角,則角的終邊在_____________12.已知x、y滿足約束條件,則的最小值為________.13.已知中,,則面積的最大值為_____14.等腰直角中,,CD是AB邊上的高,E是AC邊的中點,現(xiàn)將沿CD翻折成直二面角,則異面直線DE與AB所成角的大小為________.15.如圖,在中,已知點在邊上,,,則的長為____________.16.已知正方形,向正方形內(nèi)任投一點,則的面積大于正方形面積四分之一的概率是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如果定義在上的函數(shù),對任意的,都有,則稱該函數(shù)是“函數(shù)”.(I)分別判斷下列函數(shù):①;②;③,是否為“函數(shù)”?(直接寫出結(jié)論)(II)若函數(shù)是“函數(shù)”,求實數(shù)的取值范圍.(III)已知是“函數(shù)”,且在上單調(diào)遞增,求所有可能的集合與18.已知數(shù)列的首項.(1)證明:數(shù)列是等比數(shù)列;(2)數(shù)列的前項和.19.下表中的數(shù)據(jù)是一次階段性考試某班的數(shù)學、物理原始成績:用這44人的兩科成績制作如下散點圖:學號為22號的同學由于嚴重感冒導致物理考試發(fā)揮失常,學號為31號的同學因故未能參加物理學科的考試,為了使分析結(jié)果更客觀準確,老師將兩同學的成績(對應(yīng)于圖中兩點)剔除后,用剩下的42個同學的數(shù)據(jù)作分析,計算得到下列統(tǒng)計指標:數(shù)學學科平均分為110.5,標準差為18.36,物理學科的平均分為74,標準差為11.18,數(shù)學成績與物理成績的相關(guān)系數(shù)為,回歸直線(如圖所示)的方程為.(1)若不剔除兩同學的數(shù)據(jù),用全部44人的成績作回歸分析,設(shè)數(shù)學成績與物理成績的相關(guān)系數(shù)為,回歸直線為,試分析與的大小關(guān)系,并在圖中畫出回歸直線的大致位置;(2)如果同學參加了這次物理考試,估計同學的物理分數(shù)(精確到個位);(3)就這次考試而言,學號為16號的同學數(shù)學與物理哪個學科成績要好一些?(通常為了比較某個學生不同學科的成績水平,可按公式統(tǒng)一化成標準分再進行比較,其中為學科原始分,為學科平均分,為學科標準差).20.已知函數(shù),.(1)將化為的形式(,,)并求的最小正周期;(2)設(shè),若在上的值域為,求實數(shù)、的值;(3)若對任意的和恒成立,求實數(shù)取值范圍.21.記為等差數(shù)列的前項和,已知,.(Ⅰ)求的通項公式;(Ⅱ)求,并求的最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
等式分子分母同時除以即可得解.【詳解】由可得.故選:C.【點睛】本題考查了三角函數(shù)商數(shù)關(guān)系的應(yīng)用,屬于基礎(chǔ)題.2、C【解析】
根據(jù)線面垂直的性質(zhì),逐項判斷即可得出結(jié)果.【詳解】A中,若,由,可得;故A不滿足題意;B中,若,由,可得;故B不滿足題意;C中,若,由,可得;故C正確;D中,若與相交,由,可得異面或平,故D不滿足題意.故選C【點睛】本題主要考查線面垂直的性質(zhì),熟記線面垂直的性質(zhì)定理即可,屬于常考題型.3、D【解析】,所以,則,故選擇D.4、B【解析】
設(shè)出菱形的邊長,在三角形ADE中,用余弦定理表示出cosA【詳解】設(shè)菱形的邊長為3a,在三角形ADE中,AD=3a,AE=a,DE=4,有余弦定理得cosA=10a2-166a故選:B【點睛】本小題主要考查余弦定理解三角形,考查同角三角函數(shù)的基本關(guān)系式,考查菱形的面積公式,考查二次函數(shù)最值的求法,屬于中檔題.5、D【解析】
取特殊值檢驗,利用排除法得答案?!驹斀狻恳驗椋瑒t當時,故A錯;當時,故B錯;當時,,故C錯;因為且,所以故選D.【點睛】本題考查不等式的基本性質(zhì),屬于簡單題。6、C【解析】
設(shè),證明出,可判斷出選項A、C的正誤;由為等腰三角形結(jié)合可判斷出B選項的正誤;證明平面可判斷出D選項的正誤.【詳解】如下圖所示,設(shè),則為的中點,在正方體中,,則四邊形為平行四邊形,.易知點、分別為、的中點,,則四邊形為平行四邊形,則,由于過直線外一點有且只有一條直線與已知直線平行,則A選項中的命題錯誤;,平面,平面,平面,C選項中的命題正確;易知,則為等腰三角形,且為底,所以,與不垂直,由于,則與不垂直,B選項中的命題錯誤;四邊形為正方形,則,在正方體中,平面,平面,,,平面,平面,,同理可證,且,平面,則與平面不垂直,D選項中的命題錯誤.故選C.【點睛】本題考查線線、線面關(guān)系的判斷,解題時應(yīng)充分利用線面平行與垂直等判定定理證明線面平行、線面垂直,考查推理能力,屬于中等題.7、D【解析】
根據(jù)程序語言的作用,模擬程序的運行結(jié)果,即可得到答案.【詳解】模擬程序的運行,可得,執(zhí)行循環(huán)體,,執(zhí)行循環(huán)體,,執(zhí)行循環(huán)體,,執(zhí)行循環(huán)體,,退出循環(huán),輸出的值為1.故選:D.【點睛】本題考查利用模擬程序執(zhí)行過程求輸出結(jié)果,考查邏輯推理能力和運算求解能力,屬于基礎(chǔ)題.8、A【解析】
由正弦定理,整理得到,即可求解,得到答案.【詳解】在中,因為,由正弦定理可得,因為,則,所以,即,又因為,則,故選A.【點睛】本題主要考查了正弦定理的應(yīng)用,其中解答中熟練應(yīng)用正弦定理的邊角互化,以及特殊角的三角函數(shù)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.9、B【解析】
先將函數(shù)化簡,再根據(jù)三角函數(shù)的圖像性質(zhì)判斷單調(diào)性和對稱性,從而選擇答案.【詳解】
根據(jù)選項有,當時,在在上單調(diào)遞增.又即為的對稱軸.當時,為的對稱軸.故選:B【點睛】本題考查的單調(diào)性和對稱性質(zhì),屬于中檔題.10、C【解析】
由,可得成等比數(shù)列,即有=4;討論成等差數(shù)列或成等差數(shù)列,運用中項的性質(zhì),解方程可得,即可得到所求和.【詳解】由,可得成等比數(shù)列,即有=4,①若成等差數(shù)列,可得,②由①②可得,1;若成等差數(shù)列,可得,③由①③可得,1.綜上可得1.故選:C.【點睛】本題考查等差數(shù)列和等比數(shù)列的中項的性質(zhì),考查運算能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、第二或第四象限【解析】
根據(jù)角是第四象限角,寫出角的范圍,即可求出角的終邊所在位置.【詳解】因為角是第四象限角,所以,即有,當為偶數(shù)時,角的終邊在第四象限;當為奇數(shù)時,角的終邊在第二象限,故角的終邊在第二或第四象限.【點睛】本題主要考查象限角的集合的應(yīng)用.12、-3【解析】
作出可行域,目標函數(shù)過點時,取得最小值.【詳解】作出可行域如圖表示:目標函數(shù),化為,當過點時,取得最大值,則取得最小值,由,解得,即,的最小值為.故答案為:【點睛】本題考查二元一次不等式組表示平面區(qū)域,以及線性目標函數(shù)的最值,屬于基礎(chǔ)題.13、【解析】
設(shè),則,根據(jù)面積公式得,由余弦定理求得代入化簡,由三角形三邊關(guān)系求得,由二次函數(shù)的性質(zhì)求得取得最大值.【詳解】解:設(shè),則,根據(jù)面積公式得,由余弦定理可得,可得:,由三角形三邊關(guān)系有:,且,解得:,故當時,取得最大值,故答案為:.【點睛】本題主要考查余弦定理和面積公式在解三角形中的應(yīng)用.當涉及最值問題時,可考慮用函數(shù)的單調(diào)性和定義域等問題,屬于中檔題.14、【解析】
取的中點,連接,則與所成角即為與所成角,根據(jù)已知可得,,可以判斷三角形為等邊三角形,進而求出異面直線直線DE與AB所成角.【詳解】取的中點,連接,則,直線DE與AB所成角即為與所成角,,,,,,即三角形為等邊三角形,異面直線DE與AB所成角的大小為.故答案為:【點睛】本題考查立體幾何中的翻折問題,考查了異面直線所成的角,考查了學生的空間想象能力,屬于基礎(chǔ)題.15、【解析】
由誘導公式可知,在中用余弦定理可得BD的長?!驹斀狻坑深}得,,在中,可得,又,代入得,解得.故答案為:【點睛】本題考查余弦定理和誘導公式,是基礎(chǔ)題。16、【解析】
向正方形內(nèi)任投一點,所有等可能基本事件構(gòu)成正方形區(qū)域,當?shù)拿娣e大于正方形面積四分之一的所有基本事件構(gòu)成區(qū)域矩形區(qū)域,由面積比可得概率值.【詳解】如圖邊長為1的正方形中,分別是的中點,當點在線段上時,的面積為,所以的面積大于正方形面積四分之一,此時點應(yīng)在矩形內(nèi),由幾何概型得:,故填.【點睛】本題考查幾何概型,利用面積比求概率值,考查對幾何概型概率計算.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(I)①、②是“函數(shù)”,③不是“函數(shù)”;(II)的取值范圍為;(III),【解析】試題分析:(1)根據(jù)“β函數(shù)”的定義判定.①、②是“β函數(shù)”,③不是“β函數(shù)”;(2)由題意,對任意的x∈R,f(﹣x)+f(x)≠0,故f(﹣x)+f(x)=2cosx+2a由題意,對任意的x∈R,2cosx+2a≠0,即a≠﹣cosx即可得實數(shù)a的取值范圍(3)對任意的x≠0,分(a)若x∈A且﹣x∈A,(b)若x∈B且﹣x∈B,驗證。(I)①、②是“函數(shù)”,③不是“函數(shù)”.(II)由題意,對任意的,,即.因為,所以.故.由題意,對任意的,,即.故實數(shù)的取值范圍為.(Ⅲ)()對任意的(a)若且,則,,這與在上單調(diào)遞增矛盾,(舍),(b)若且,則,這與是“函數(shù)”矛盾,(舍).此時,由的定義域為,故對任意的,與恰有一個屬于,另一個屬于.()假設(shè)存在,使得,則由,故.(a)若,則,矛盾,(b)若,則,矛盾.綜上,對任意的,,故,即,則.()假設(shè),則,矛盾.故故,.經(jīng)檢驗,.符合題意點睛:此題是新定義的題目,根據(jù)已知的新概念,新信息來馬上應(yīng)用到題型中,根據(jù)函數(shù)的定義即函數(shù)沒有關(guān)于原點對稱的部分即可,故可以從圖像的角度來研究函數(shù);第三問可以假設(shè)存在,最后推翻結(jié)論即可。18、(1)證明見解析;(2).【解析】試題分析:(1)對兩邊取倒數(shù)得,化簡得,所以數(shù)列是等比數(shù)列;(2)由(1)是等比數(shù)列.,求得,利用錯位相減法和分組求和法求得前項和.試題解析:(1),又,數(shù)列是以為首項,為公比的等比數(shù)列.(2)由(1)知,,即,設(shè),①則,②由①-②得,.又.數(shù)列的前項和.考點:配湊法求通項,錯位相減法.19、(1),理由見解析(2)81(3)【解析】
(1)不剔除兩同學的數(shù)據(jù),44個數(shù)據(jù)會使回歸效果變差,從而得到,描出回歸直線即可;(2)將x=125代入回歸直線方程,即可得到答案;(3)利用題目給出的標準分計算公式進行計算即可得到結(jié)論.【詳解】(1),說明理由可以是:①離群點A,B會降低變量間的線性關(guān)聯(lián)程度;②44個數(shù)據(jù)點與回歸直線的總偏差更大,回歸效果更差,所以相關(guān)系數(shù)更?。虎?2個數(shù)據(jù)點與回歸直線的總偏差更小,回歸效果更好,所以相關(guān)系數(shù)更大;④42個數(shù)據(jù)點更加貼近回歸直線;⑤44個數(shù)據(jù)點與回歸直線更離散,或其他言之有理的理由均可.要點:直線斜率須大于0且小于的斜率,具體為止稍有出入沒關(guān)系,無需說明理由.(2)令,代入得所以,估計同學的物理分數(shù)大約為分.(3)由表中知同學的數(shù)學原始分為122,物理原始分為82,數(shù)學標準分為物理標準分為,故同學物理成績比數(shù)學成績要好一些.【點睛】本題考查散點圖和線性回歸方程的簡單應(yīng)用,考查數(shù)據(jù)處理與數(shù)學應(yīng)用能力.20、(1),;(2),,或,;(3).【解析】
(1)由三角函數(shù)的恒等變換公式和正弦函數(shù)的周期的公式,即可求解;(2)由正弦函數(shù)的圖象與性質(zhì),討論的范圍,得到的方程組,即可求得的值;(3)對討論奇數(shù)和偶數(shù),由參數(shù)分離和函數(shù)的最值,即可求得的范圍.【詳解】(1)由題意,函數(shù)所以函數(shù)的最小正周期為.(2)由(1)知,當時,則,所以,即,令,則,函數(shù),即,,當時,在為單調(diào)遞增函數(shù),可得且,即,解得;當時,在為單調(diào)遞減函數(shù),可得且,即,解得;綜上可得,或,;(3)由(2)可知,當時,,當為奇數(shù)時,,即為,即恒成立,又由,即;當為偶數(shù)時,,即為,即恒成立,又由,即;綜上可得,實數(shù)滿足,即實數(shù)取值范圍.【點睛】本題主要考查了三角恒等變換,以及三角函數(shù)的圖象與性質(zhì)的應(yīng)用,其中解中熟練化簡函數(shù)的解析式,合理應(yīng)用三角函數(shù)的圖象與性質(zhì),以及利用分類討論和分離參數(shù)求解是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 拆架子施工方案(3篇)
- 2026年東營市利津縣事業(yè)單位公開招聘工作人員(31人)參考考試題庫及答案解析
- 2026年甘肅省隴南市西和縣漢源鎮(zhèn)幼兒園公益性崗位招聘考試備考試題及答案解析
- 中職急救護理學生管理
- 2026西藏山南加查縣文旅局公益性崗位招聘1人考試備考題庫及答案解析
- 2026黑龍江哈爾濱工業(yè)大學電氣工程及自動化學院儲能與電力變換研究所招聘筆試備考試題及答案解析
- 2026廣東省水利水電第三工程局有限公司校園招聘備考考試題庫及答案解析
- 2026廣東佛山市南海區(qū)人民醫(yī)院后勤崗位招聘1人(神經(jīng)內(nèi)科文員)備考考試試題及答案解析
- 迪士尼樂園闖關(guān)問答
- 2026年山東工程職業(yè)技術(shù)大學高層次人才招聘備考考試試題及答案解析
- 高中期末家長會
- 2023年度國家社科基金一般項目申請書(語言學)立項成功范本,特珍貴
- 風機系統(tǒng)巡檢內(nèi)容及標準
- 新生兒高血糖護理課件
- 熱食類食品制售管理制度
- 五金件外觀檢驗標準
- 香精概論第四章-芳香療法課件
- 電梯安裝調(diào)試工地EHS管理要求和交底
- 車輛考核制度6篇
- JJF 1487-2014超聲波探傷試塊校準規(guī)范
- GB/T 39253-2020增材制造金屬材料定向能量沉積工藝規(guī)范
評論
0/150
提交評論