2022-2023學(xué)年浙江省安吉縣上墅私立高級中學(xué)高一數(shù)學(xué)第二學(xué)期期末達標檢測模擬試題含解析_第1頁
2022-2023學(xué)年浙江省安吉縣上墅私立高級中學(xué)高一數(shù)學(xué)第二學(xué)期期末達標檢測模擬試題含解析_第2頁
2022-2023學(xué)年浙江省安吉縣上墅私立高級中學(xué)高一數(shù)學(xué)第二學(xué)期期末達標檢測模擬試題含解析_第3頁
2022-2023學(xué)年浙江省安吉縣上墅私立高級中學(xué)高一數(shù)學(xué)第二學(xué)期期末達標檢測模擬試題含解析_第4頁
2022-2023學(xué)年浙江省安吉縣上墅私立高級中學(xué)高一數(shù)學(xué)第二學(xué)期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖所示的程序框圖,若執(zhí)行的運算是,則在空白的執(zhí)行框中,應(yīng)該填入A.B.C.D.2.右圖中,小方格是邊長為1的正方形,圖中粗線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.3.已知是奇函數(shù),且.若,則()A.1 B.2 C.3 D.44.已知等比數(shù)列的前項和為,若,則()A. B. C.5 D.65.已知實數(shù)滿足且,則下列選項中不一定成立的是()A. B. C. D.6.以兩點A(-3,-1)和B(5,5)為直徑端點的圓的標準方程是()A.(x-1)2+(y-2)2=10 B.(x-1)2+(y-2)2=100C.(x-1)2+(y-2)2=5 D.(x-1)2+(y-2)2=257.在邊長為1的等邊三角形ABC中,D是AB的中點,E為線段AC上一動點,則的取值范圍為()A. B. C. D.8.已知向量,,則向量在向量方向上的投影為()A. B. C. D.9.某賽季甲、乙兩名籃球運動員5場比賽得分的莖葉圖如圖所示,已知甲得分的極差為32,乙得分的平均值為24,則下列結(jié)論錯誤的是()A.B.甲得分的方差是736C.乙得分的中位數(shù)和眾數(shù)都為26D.乙得分的方差小于甲得分的方差10.函數(shù)的最大值為A.4 B.5 C.6 D.7二、填空題:本大題共6小題,每小題5分,共30分。11.在平面直角坐標系中,在軸、軸正方向上的投影分別是、,則與同向的單位向量是__________.12.等差數(shù)列中,則此數(shù)列的前項和_________.13.在中,.以為圓心,2為半徑作圓,線段為該圓的一條直徑,則的最小值為_________.14.△ABC中,,,則=_____.15.若過點作圓的切線,則直線的方程為_______________.16.設(shè)等差數(shù)列的前項和為,若,,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知為數(shù)列的前n項和,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前n項和.18.在中,角A,B,C所對的邊分別為a,b,c,.(1)求角B;(2)若,求周長的取值范圍.19.已知角α的頂點與原點O重合,始邊與x軸的非負半軸重合,它的終邊過點P().(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β滿足sin(α+β)=,求cosβ的值.20.在中,角A,B,C的對邊分別為a,b,c,若,.(1)求角A的大小;(2)若,求的周長.21.已知圓.(1)求圓的半徑和圓心坐標;(2)斜率為的直線與圓相交于、兩點,求面積最大時直線的方程.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】試題分析:解:運行第一次:,不成立;運行第二次:,不成立;運行第三次:,不成立;運行第四次:,不成立;運行第四次:,成立;輸出所以應(yīng)選D.考點:循環(huán)結(jié)構(gòu).2、D【解析】

由三視圖可知,該幾何體為棱長為2的正方體截去一個三棱錐,由正方體的體積減去三棱錐的體積求解.【詳解】根據(jù)三視圖,可知原幾何體如下圖所示,該幾何體為棱長為的正方體截去一個三棱錐,則該幾何體的體積為.故選:D.【點睛】本題考查了幾何體三視圖的應(yīng)用問題以及幾何體體積的求法,關(guān)鍵是根據(jù)三視圖還原原來的空間幾何體,是中檔題.3、C【解析】

根據(jù)題意,由奇函數(shù)的性質(zhì)可得,變形可得:,結(jié)合題意計算可得的值,進而計算可得答案.【詳解】根據(jù)題意,是奇函數(shù),則,變形可得:,則有,即,又由,則,,故選:.【點睛】本題考查函數(shù)奇偶性的性質(zhì)以及應(yīng)用,涉及誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.4、A【解析】

先通分,再利用等比數(shù)列的性質(zhì)求和即可?!驹斀狻浚蔬xA.【點睛】本題考查等比數(shù)列的性質(zhì),屬于基礎(chǔ)題。5、D【解析】

由題設(shè)條件可以得到,從而可判斷A,B中的不等式都是正確的,再把題設(shè)變形后可得,從而C中的不等式也是成立的,當,D中的不等式不成立,而時,它又是成立的,故可得正確選項.【詳解】因為且,故,所以,故A正確;又,故,故B正確;而,故,故C正確;當時,,當時,有,故不一定成立,綜上,選D.【點睛】本題考查不等式的性質(zhì),屬于基礎(chǔ)題.6、D【解析】分析:由條件求出圓心坐標和半徑的值,從而得出結(jié)論.詳解:圓心坐標為(1,2),半徑r==5,故所求圓的標準方程為(x-1)2+(y-2)2=25.故選D.點睛:本題主要考查求圓的標準方程的方法,求出圓心坐標和半徑的值,是解題的關(guān)鍵,屬于基礎(chǔ)題.7、B【解析】

由題意,以點為坐標原點,方向為軸正方向,方向為軸正方向,建立平面直角坐標系,得到,,以及直線的方程,設(shè)出點E坐標,根據(jù)向量數(shù)量積,直接計算,即可得出結(jié)果.【詳解】如圖,以點為坐標原點,方向為軸正方向,方向為軸正方向,建立平面直角坐標系,因為等邊三角形的邊長為1,所以,,,,則直線的方程為,整理得,因為E為線段AC上一動點,設(shè),,則,,所以,因為,所以在上單調(diào)遞減,在上單調(diào)遞增,所以的最小值為,最大值為.即的取值范圍為.故選B【點睛】本題主要考查平面向量的數(shù)量積,利用建立坐標系的方法求解即可,屬于??碱}型.8、B【解析】

先計算向量夾角,再利用投影定義計算即可.【詳解】由向量,,則,,向量在向量方向上的投影為.故選:B【點睛】本題考查了向量數(shù)量積的坐標表示以及向量數(shù)量積的幾何意義,屬于基礎(chǔ)題.9、B【解析】

根據(jù)題意,依次分析選項,綜合即可得答案.【詳解】根據(jù)題意,依次分析選項:對于A,甲得分的極差為32,30+x﹣6=32,解得:x=8,A正確,對于B,甲得分的平均值為,其方差為,B錯誤;對于C,乙的數(shù)據(jù)為:12、25、26、26、31,其中位數(shù)、眾數(shù)都是26,C正確,對于D,乙得分比較集中,則乙得分的方差小于甲得分的方差,D正確;故選:B.【點睛】本題考查莖葉圖的應(yīng)用,涉及數(shù)據(jù)極差、平均數(shù)、中位數(shù)、眾數(shù)、方差的計算,屬于基礎(chǔ)題.10、B【解析】試題分析:因為,而,所以當時,取得最大值5,選B.【考點】正弦函數(shù)的性質(zhì)、二次函數(shù)的性質(zhì)【名師點睛】求解本題易出現(xiàn)的錯誤是認為當時,函數(shù)取得最大值.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)題意得出,再利用單位向量的定義即可求解.【詳解】由在軸、軸正方向上的投影分別是、,可得,所以與同向的單位向量為,故答案為:【點睛】本題考查了向量的坐標表示以及單位向量的定義,屬于基礎(chǔ)題.12、180【解析】由,,可知.13、-10【解析】

向量變形為,化簡得,轉(zhuǎn)化為討論夾角問題求解.【詳解】由題線段為該圓的一條直徑,設(shè)夾角為,可得:,當夾角為時取得最小值-10.故答案為:-10【點睛】此題考查求平面向量數(shù)量積的最小值,關(guān)鍵在于根據(jù)平面向量的運算法則進行變形,結(jié)合線性運算化簡求得,此題也可建立直角坐標系,三角換元設(shè)坐標利用函數(shù)關(guān)系求最值.14、【解析】試題分析:三角形中,,由,得又,所以有正弦定理得即即A為銳角,由得,因此考點:正余弦定理15、或【解析】

討論斜率不存在時是否有切線,當斜率存在時,運用點到直線距離等于半徑求出斜率【詳解】圓即①當斜率不存在時,為圓的切線②當斜率存在時,設(shè)切線方程為即,解得此時切線方程為,即綜上所述,則直線的方程為或【點睛】本題主要考查了過圓外一點求切線方程,在求解過程中先討論斜率不存在的情況,然后討論斜率存在的情況,利用點到直線距離公式求出結(jié)果,較為基礎(chǔ)。16、10【解析】

將和用首項和公差表示,解方程組,求出首項和公式,利用公式求解.【詳解】設(shè)該數(shù)列的公差為,由題可知:,解得,故.故答案為:10.【點睛】本題考查由基本量計算等差數(shù)列的通項公式以及前項和,屬基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)先根據(jù)和項與通項關(guān)系得項之間遞推關(guān)系,再根據(jù)等比數(shù)列定義以及通項公式求結(jié)果,(2)根據(jù)錯位相減法求結(jié)果.【詳解】(1)因為,所以當時,,相減得,,當時,,因此數(shù)列為首項為,2為公比的等比數(shù)列,(2),所以,則2,兩式相減得.【點睛】本題考查錯位相減法求和以及由和項求通項,考查基本求解能力,屬中檔題.18、(1);(2)【解析】

(1)根據(jù)輔助角公式和的范圍,得到的值;(2)利用余弦定理和基本不等式,得到的范圍,結(jié)合三角形三邊關(guān)系,從而得到周長的取值范圍.【詳解】(1)因為,所以,即,因為,所以,所以,所以;(2)在中,由余弦定理得由基本不等式可知,又,所以解得,根據(jù)三角形三邊關(guān)系得,即,故所以周長的范圍為.【點睛】本題考查輔助角公式,余弦定理解三角形,基本不等式求最值,三角形三邊關(guān)系,屬于中檔題.19、(Ⅰ);(Ⅱ)或.【解析】

分析:(Ⅰ)先根據(jù)三角函數(shù)定義得,再根據(jù)誘導(dǎo)公式得結(jié)果,(Ⅱ)先根據(jù)三角函數(shù)定義得,再根據(jù)同角三角函數(shù)關(guān)系得,最后根據(jù),利用兩角差的余弦公式求結(jié)果.【詳解】詳解:(Ⅰ)由角的終邊過點得,所以.(Ⅱ)由角的終邊過點得,由得.由得,所以或.點睛:三角函數(shù)求值的兩種類型(1)給角求值:關(guān)鍵是正確選用公式,以便把非特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù).(2)給值求值:關(guān)鍵是找出已知式與待求式之間的聯(lián)系及函數(shù)的差異.①一般可以適當變換已知式,求得另外函數(shù)式的值,以備應(yīng)用;②變換待求式,便于將已知式求得的函數(shù)值代入,從而達到解題的目的.20、(1);(2)【解析】

(1)根據(jù)三角形面積公式,結(jié)合平面向量數(shù)量積定義,分別表示出,聯(lián)立即可求得,進而得的值.(2)由,結(jié)合余弦定理即可表示出,由(1)可得.即可聯(lián)立表示出,進而求得周長.【詳解】(1)因為,所以,則而,可得,所以即化簡可得所以;(2)因為,所以由余弦定理可得,即,由(1)知,則,所以,所以的周長為.【點睛】本題考查了三角形面積公式的應(yīng)用,余弦定理解三角形,平面向量數(shù)量積的定義及應(yīng)用,屬于中檔題.21、(1)圓的圓心坐標為,半徑為;(2)或.【解析】

(1)將圓的方程化為標準方程,可得出圓的圓心坐標和半徑;(2)設(shè)直線的方程為,即,設(shè)圓心到直線的距離,計算出直線截圓的弦長,利用基本不等式可得出的最大值以及等號成立時對應(yīng)的的值,利

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論