版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若,滿足不等式組,則的最小值為()A.-5 B.-4 C.-3 D.-22.已知等差數(shù)列和的前項(xiàng)和分別為和,.若,則的取值集合為()A. B.C. D.3.盒中裝有除顏色以外,形狀大小完全相同的3個(gè)紅球、2個(gè)白球、1個(gè)黑球,從中任取2個(gè)球,則互斥而不對(duì)立的兩個(gè)事件是()A.至少有一個(gè)白球;至少有一個(gè)紅球 B.至少有一個(gè)白球;紅、黑球各一個(gè)C.恰有一個(gè)白球:一個(gè)白球一個(gè)黑球 D.至少有一個(gè)白球;都是白球4.如圖,在直三棱柱中,,,,則異面直線與所成角的余弦值是()A. B. C. D.5.已知是等差數(shù)列的前項(xiàng)和,公差,,若成等比數(shù)列,則的最小值為()A. B.2 C. D.6.祖暅原理也就是“等積原理”,它是由我國南北朝杰出的數(shù)學(xué)家祖沖之的兒子祖暅?zhǔn)紫忍岢鰜淼?祖暅原理的內(nèi)容是:“冪勢既同,則積不容異”,“勢”即是高,“冪”是面積.意思是,如果夾在兩平行平面間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的平面所截,如果兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.已知,兩個(gè)平行平面間有三個(gè)幾何體,分別是三棱錐、四棱錐、圓錐(高度都是h),其中:三棱錐的體積為V,四棱錐的底面是邊長為a的正方形,圓錐的底面半徑為r,現(xiàn)用平行于這兩個(gè)平面的平面去截三個(gè)幾何體,如果得到的三個(gè)截面面積總相等,那么,下面關(guān)系式正確的是()A.,, B.,,C.,, D.,,7.已知等差數(shù)列an的前n項(xiàng)和為Sn,若a8=12,S8A.-2 B.2 C.-1 D.18.已知,集合,則A. B. C. D.9.不等式組所表示的平面區(qū)域的面積為()A.1 B. C. D.10.設(shè)等差數(shù)列an的前n項(xiàng)和為Sn,若a1>0,A.S10 B.S11 C.S二、填空題:本大題共6小題,每小題5分,共30分。11.中,內(nèi)角、、所對(duì)的邊分別是、、,已知,且,,則的面積為_____.12.若點(diǎn),關(guān)于直線l對(duì)稱,那么直線l的方程為________.13.已知圓:,若對(duì)于圓:上任意一點(diǎn),在圓上總存在點(diǎn)使得,則實(shí)數(shù)的取值范圍為__________.14.四棱柱中,平面ABCD,平面ABCD是菱形,,,,E是BC的中點(diǎn),則點(diǎn)C到平面的距離等于________.15.已知正方體的棱長為1,則三棱錐的體積為______.16.等差數(shù)列中,,,設(shè)為數(shù)列的前項(xiàng)和,則_________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在三棱錐中,,分別為,的中點(diǎn),且.(1)證明:平面;(2)若平面平面,證明:.18.某校為創(chuàng)建“綠色校園”,在校園內(nèi)種植樹木,有A、B、C三種樹木可供選擇,已知這三種樹木6年內(nèi)的生長規(guī)律如下:A樹木:種植前樹木高0.84米,第一年能長高0.1米,以后每年比上一年多長高0.2米;B樹木:種植前樹木高0.84米,第一年能長高0.04米,以后每年生長的高度是上一年生長高度的2倍;C樹木:樹木的高度(單位:米)與生長年限(單位:年,)滿足如下函數(shù):(表示種植前樹木的高度,?。?)若要求6年內(nèi)樹木的高度超過5米,你會(huì)選擇哪種樹木?為什么?(2)若選C樹木,從種植起的6年內(nèi),第幾年內(nèi)生長最快?19.已知數(shù)列滿足.(1)若,證明:數(shù)列是等比數(shù)列,求的通項(xiàng)公式;(2)求的前項(xiàng)和.20.已知函數(shù)的最小正周期為.將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)變?yōu)樵瓉淼谋叮玫胶瘮?shù)的圖象.(1)求的值及函數(shù)的解析式;(2)求的單調(diào)遞增區(qū)間及對(duì)稱中心21.已知數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列的通項(xiàng)公式;(2)為數(shù)列的前n項(xiàng)和,,求數(shù)列的前n項(xiàng)和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
畫出不等式組表示的平面區(qū)域,平移目標(biāo)函數(shù),找出最優(yōu)解,求出的最小值.【詳解】畫出,滿足不等式組表示的平面區(qū)域,如圖所示平移目標(biāo)函數(shù)知,當(dāng)目標(biāo)函數(shù)過點(diǎn)時(shí),取得最小值,由得,即點(diǎn)坐標(biāo)為∴的最小值為,故選A.【點(diǎn)睛】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.2、D【解析】
首先根據(jù)即可得出,再根據(jù)前n項(xiàng)的公式計(jì)算出即可?!驹斀狻浚xD.【點(diǎn)睛】本題主要考查等差數(shù)列的求和公式及等差數(shù)列的性質(zhì),屬于難題.等差數(shù)列的常用性質(zhì)有:(1)通項(xiàng)公式的推廣:
(2)若
為等差數(shù)列,
;(3)若是等差數(shù)列,公差為,
,則是公差
的等差數(shù)列;3、B【解析】
根據(jù)對(duì)立事件和互斥事件的定義,對(duì)每個(gè)選項(xiàng)進(jìn)行逐一分析即可.【詳解】從6個(gè)小球中任取2個(gè)小球,共有15個(gè)基本事件,因?yàn)榇嬖谑录喝〕龅膬蓚€(gè)球?yàn)?個(gè)白球和1個(gè)紅球,故至少有一個(gè)白球;至少有一個(gè)紅球,這兩個(gè)事件不互斥,故A錯(cuò)誤;因?yàn)榇嬖谑录喝〕龅膬蓚€(gè)球?yàn)?個(gè)白球和1個(gè)黑球,故恰有一個(gè)白球:一個(gè)白球一個(gè)黑球,這兩個(gè)事件不互斥,故C錯(cuò)誤;因?yàn)榇嬖谑录喝〕龅膬蓚€(gè)球都是白球,故至少有一個(gè)白球;都是白球,這兩個(gè)事件不互斥,故D錯(cuò)誤;因?yàn)橹辽儆幸粋€(gè)白球,包括:1個(gè)白球和1個(gè)紅球,1個(gè)白球和1個(gè)黑球,2個(gè)白球這3個(gè)基本事件;紅、黑球各一個(gè)只包括1個(gè)紅球1個(gè)白球這1個(gè)基本事件,故兩個(gè)事件互斥,因還有其它基本事件未包括,故不對(duì)立.故B正確.故選:B.【點(diǎn)睛】本題考查互斥事件和對(duì)立事件的辨析,屬基礎(chǔ)題.4、D【解析】連結(jié),∵,
∴是異面直線與所成角(或所成角的補(bǔ)角),
∵在直三棱柱中,,,,
∴,,,,
∴,
∴異面直線與所成角的余弦值為,故選D.5、A【解析】
由成等比數(shù)列可得數(shù)列的公差,再利用等差數(shù)列的前項(xiàng)和公式及通項(xiàng)公式可得為關(guān)于的式子,再利用對(duì)勾函數(shù)求最小值.【詳解】∵成等比數(shù)列,∴,解得:,∴,令,令,其中的整數(shù),∵函數(shù)在遞減,在遞增,∴當(dāng)時(shí),;當(dāng)時(shí),,∴.故選:A.【點(diǎn)睛】本題考查等差數(shù)列與等比數(shù)列的基本量運(yùn)算、函數(shù)的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意為整數(shù),如果利用基本不等式求解,等號(hào)是取不到的.6、D【解析】
由祖暅原理可知:三個(gè)幾何體的體積相等,根據(jù)椎體體積公式即可求解.【詳解】由祖暅原理可知:三個(gè)幾何體的體積相等,則,解得,由,解得,所以.故選:D【點(diǎn)睛】本題考查了椎體的體積公式,需熟記公式,屬于基礎(chǔ)題.7、B【解析】
直角利用待定系數(shù)法可得答案.【詳解】因?yàn)镾8=8a1+a82【點(diǎn)睛】本題主要考查等差數(shù)列的基本量的相關(guān)計(jì)算,難度不大.8、D【解析】
先求出集合A,由此能求出?UA.【詳解】∵U=R,集合A={x|1﹣2x>0}={x|x},∴?UA={x|x}.故選:D.【點(diǎn)睛】本題考查補(bǔ)集的求法,考查補(bǔ)集定義、不等式性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.9、D【解析】
畫出可行域,根據(jù)邊界點(diǎn)的坐標(biāo)計(jì)算出平面區(qū)域的面積.【詳解】畫出可行域如下圖所示,其中,故平面區(qū)域?yàn)槿切?,且三角形面積為,故選D.【點(diǎn)睛】本小題主要考查線性規(guī)劃可行域面積的求法,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.10、C【解析】分析:利用等差數(shù)列的通項(xiàng)公式,化簡求得a20+a詳解:在等差數(shù)列an中,a則3(a1+7d)=5(a1所以a20又由a1>0,所以a20>0,a21<0點(diǎn)睛:本題考查了等差數(shù)列的通項(xiàng)公式,及等差數(shù)列的前n項(xiàng)和Sn的性質(zhì),其中解答中根據(jù)等差數(shù)列的通項(xiàng)公式,化簡求得a20+二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由正弦定理邊角互化思想結(jié)合兩角和的正弦公式得出,再利用余弦定理可求出、的值,然后利用三角形的面積公式可計(jì)算出的面積.【詳解】,由邊角互化思想得,即,,由余弦定理得,,所以,,因此,,故答案為.【點(diǎn)睛】本題考查正弦定理邊角互化思想的應(yīng)用,考查利用余弦定理解三角形以及三角形面積公式的應(yīng)用,解題時(shí)要結(jié)合三角形已知元素類型合理選擇正弦、余弦定理解三角形,考查運(yùn)算求解能力,屬于中等題.12、【解析】
利用直線垂直求出對(duì)稱軸斜率,利用中點(diǎn)坐標(biāo)公式求出中點(diǎn),再由點(diǎn)斜式可得結(jié)果.【詳解】求得,∵點(diǎn),關(guān)于直線l對(duì)稱,∴直線l的斜率1,直線l過AB的中點(diǎn),∴直線l的方程為,即.故答案為:.【點(diǎn)睛】本題主要考查直線垂直的性質(zhì),考查了直線點(diǎn)斜式方程的應(yīng)用,屬于基礎(chǔ)題.13、【解析】
由,知為圓的切線,所以兩圓外離,即圓心距大于兩半徑之和,代入方程即可。【詳解】由,知為圓的切線,即在圓上任意一點(diǎn)都可以向圓作切線,當(dāng)兩圓外離時(shí),滿足條件,所以,,即,化簡,得:,解得:或.【點(diǎn)睛】和圓半徑所成夾角為,即是圓的切線,兩圓外離表示圓心距大于兩半徑之和。14、【解析】
利用等體法即可求解.【詳解】如圖,由ABCD是菱形,,,E是BC的中點(diǎn),所以,又平面ABCD,所以平面ABCD,即,又,則平面,由平面,所以,所以,設(shè)點(diǎn)C到平面的距離為,由即,即,所以.故答案為:【點(diǎn)睛】本題考查了等體法求點(diǎn)到面的距離,同時(shí)考查了線面垂直的判定定理,屬于基礎(chǔ)題.15、.【解析】
根據(jù)題意畫出正方體,由線段關(guān)系即可求得三棱錐的體積.【詳解】根據(jù)題意,畫出正方體如下圖所示:由棱錐的體積公式可知故答案為:【點(diǎn)睛】本題考查了三棱錐體積求法,通過轉(zhuǎn)換頂點(diǎn)法求棱錐的體積是常用方法,屬于基礎(chǔ)題.16、【解析】
由等差數(shù)列的性質(zhì)可得出的值,然后利用等差數(shù)列的求和公式可求出的值.【詳解】由等差數(shù)列的基本性質(zhì)可得,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列求和,同時(shí)也考查了等差數(shù)列基本性質(zhì)的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】
(1)先證明,再證明平面;(2)先證明平面,再證明.【詳解】證明:(1)因?yàn)?,分別為,的中點(diǎn),所以.又平面,平面,所以平面.(2)因?yàn)椋瑸橹悬c(diǎn),所以.又平面平面.平面平面,所以平面.又平面,所以.【點(diǎn)睛】本題主要考查空間幾何元素位置關(guān)系的證明,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.18、(1)選擇C;(2)第4或第5年.【解析】
(1)根據(jù)已知求出三種樹木六年末的高度,判斷得解;(2)設(shè)為第年內(nèi)樹木生長的高度,先求出,設(shè),則,.再利用分析函數(shù)的單調(diào)性,分析函數(shù)的圖像得解.【詳解】(1)由題意可知,A、B、C三種樹木隨著時(shí)間的增加,高度也在增加,6年末:A樹木的高度為(米):B樹木的高度為(米):C樹木的高度為(米),所以選擇C樹木.(2)設(shè)為第年內(nèi)樹木生長的高度,則,所以,,.設(shè),則,.令,因?yàn)樵趨^(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),所以當(dāng)時(shí),取得最小值,從而取得最大值,此時(shí),解得,因?yàn)?,,故的可能值?或4,又,,即.因此,種植后第4或第5年內(nèi)該樹木生長最快.【點(diǎn)睛】本題主要考查等差數(shù)列和等比數(shù)列求和,考查函數(shù)的圖像和性質(zhì)的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力,屬于難題.19、(1)證明見解析,;(2).【解析】
(1)由條件可得,即,運(yùn)用等比數(shù)列的定義,即可得到結(jié)論;運(yùn)用等比數(shù)列的通項(xiàng)公式可得所求通項(xiàng)。(2)數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,可得所求的和?!驹斀狻拷猓海?)證明:由,得,又,,又,所以是首相為1,公比為2的等比數(shù)列;,。(2)前項(xiàng)和,,兩式相減可得:化簡可得【點(diǎn)睛】本題考查利用輔助數(shù)列求通項(xiàng)公式,以及錯(cuò)位相減求和,考查學(xué)生的計(jì)算能力,是一道基礎(chǔ)題。20、(1),;(2)單調(diào)遞增區(qū)間為,,對(duì)稱中心為.【解析】
(1)整理可得:,利用其最小正周期為即可求得:,即可求得:,再利用函數(shù)圖象平移規(guī)律可得:,問題得解.(2)令,,解不等式即可求得的單調(diào)遞增區(qū)間;令,,解方程即可求得的對(duì)稱中心的橫坐標(biāo),問題得解.【詳解】解:(1),由,得.所以.于是圖象對(duì)應(yīng)的解析式為.(2)由,得,所以函數(shù)的單調(diào)遞增區(qū)間為,.由,解得.所以的對(duì)稱中心為.【點(diǎn)睛】本題主
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 達(dá)州橋梁介紹
- 中考語文文言文對(duì)比閱讀(全國)10 《陋室銘》對(duì)比閱讀(15組73題)(原卷版)
- 物業(yè)現(xiàn)場人員安排方案范文
- 辯論社培訓(xùn)教學(xué)課件
- 車險(xiǎn)理賠培訓(xùn)課件案例
- 車隊(duì)春節(jié)期間安全培訓(xùn)課件
- 車隊(duì)安全教育培訓(xùn)制度
- 落實(shí)紀(jì)檢監(jiān)察巡察工作高質(zhì)量發(fā)展《五年行動(dòng)方案》
- 2026年食品檢驗(yàn)工(高級(jí))模擬試題含答案
- 酒店員工績效考核與晉升制度
- m的認(rèn)主協(xié)議書
- 生蠔課件教學(xué)課件
- 2025年及未來5年市場數(shù)據(jù)中國機(jī)電安裝工程市場調(diào)查研究及行業(yè)投資潛力預(yù)測報(bào)告
- 2025年湖南省公務(wù)員錄用考試《申論》真題(縣鄉(xiāng)卷)及答案解析
- kv高壓線防護(hù)施工方案
- 住建局執(zhí)法證考試題庫及答案2025
- 主管護(hù)師聘任述職報(bào)告
- AI搜索時(shí)代:從GEO到AIBE的品牌新藍(lán)圖
- 產(chǎn)品知識(shí)培訓(xùn)會(huì)議總結(jié)
- 與業(yè)主溝通技巧培訓(xùn)
- 專題11 圓(安徽專用)5年(2021-2025)中考1年模擬《數(shù)學(xué)》真題分類匯編
評(píng)論
0/150
提交評(píng)論