山東省諸城市桃林鎮(zhèn)桃林2023屆中考數(shù)學(xué)猜題卷含解析_第1頁
山東省諸城市桃林鎮(zhèn)桃林2023屆中考數(shù)學(xué)猜題卷含解析_第2頁
山東省諸城市桃林鎮(zhèn)桃林2023屆中考數(shù)學(xué)猜題卷含解析_第3頁
山東省諸城市桃林鎮(zhèn)桃林2023屆中考數(shù)學(xué)猜題卷含解析_第4頁
山東省諸城市桃林鎮(zhèn)桃林2023屆中考數(shù)學(xué)猜題卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下圖是某幾何體的三視圖,則這個幾何體是()A.棱柱 B.圓柱 C.棱錐 D.圓錐2.下列圖標(biāo)中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.3.下列哪一個是假命題()A.五邊形外角和為360°B.切線垂直于經(jīng)過切點的半徑C.(3,﹣2)關(guān)于y軸的對稱點為(﹣3,2)D.拋物線y=x2﹣4x+2017對稱軸為直線x=24.如圖,點F是ABCD的邊AD上的三等分點,BF交AC于點E,如果△AEF的面積為2,那么四邊形CDFE的面積等于()A.18 B.22 C.24 D.465.去年二月份,某房地產(chǎn)商將房價提高40%,在中央“房子是用來住的,不是用來炒的”指示下達后,立即降價30%.設(shè)降價后房價為x,則去年二月份之前房價為()A.(1+40%)×30%x B.(1+40%)(1﹣30%)xC. D.6.如圖所示,某公司有三個住宅區(qū),A、B、C各區(qū)分別住有職工30人,15人,10人,且這三點在一條大道上(A,B,C三點共線),已知AB=100米,BC=200米.為了方便職工上下班,該公司的接送車打算在此間只設(shè)一個停靠點,為使所有的人步行到停靠點的路程之和最小,那么該??奎c的位置應(yīng)設(shè)在()A.點A B.點B C.A,B之間 D.B,C之間7.點M(1,2)關(guān)于y軸對稱點的坐標(biāo)為()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)8.的相反數(shù)是()A.﹣ B. C. D.29.我國古代數(shù)學(xué)著作《九章算術(shù)》中,將底面是直角三角形,且側(cè)棱與底面垂直的三棱柱稱為“塹堵”某“塹堵”的三視圖如圖所示(網(wǎng)格圖中每個小正方形的邊長均為1),則該“塹堵”的側(cè)面積為()A.16+16 B.16+8 C.24+16 D.4+410.如圖,在圓O中,直徑AB平分弦CD于點E,且CD=4,連接AC,OD,若∠A與∠DOB互余,則EB的長是()A.2 B.4 C. D.2二、填空題(本大題共6個小題,每小題3分,共18分)11.若一次函數(shù)y=﹣2(x+1)+4的值是正數(shù),則x的取值范圍是_______.12.一個斜面的坡度i=1:0.75,如果一個物體從斜面的底部沿著斜面方向前進了20米,那么這個物體在水平方向上前進了_____米.13.定義:直線l1與l2相交于點O,對于平面內(nèi)任意一點M,點M到直線l1,l2的距離分別為p、q,則稱有序?qū)崝?shù)對(p,q)是點M的“距離坐標(biāo)”.根據(jù)上述定義,“距離坐標(biāo)”是(1,2)的點的個數(shù)共有______個.14.如圖,AB∥CD,∠1=62°,FG平分∠EFD,則∠2=.15.如圖,是由一些大小相同的小正方體搭成的幾何體分別從正面看和從上面看得到的平面圖形,則搭成該幾何體的小正方體最多是_______個.16.如圖所示,某辦公大樓正前力有一根高度是15米的旗桿ED,從辦公樓頂點A測得族桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底端C的距離DC是20米,梯坎坡長BC是13米,梯坎坡度i=1:2.4,則大樓AB的高度的為_____米.三、解答題(共8題,共72分)17.(8分)閱讀材料,解答下列問題:神奇的等式當(dāng)a≠b時,一般來說會有a2+b≠a+b2,然而當(dāng)a和b是特殊的分?jǐn)?shù)時,這個等式卻是成立的例如:()2+=+,()2+=+,()2+=+()2,…()2+=+()2,…(1)特例驗證:請再寫出一個具有上述特征的等式:;(2)猜想結(jié)論:用n(n為正整數(shù))表示分?jǐn)?shù)的分母,上述等式可表示為:;(3)證明推廣:①(2)中得到的等式一定成立嗎?若成立,請證明;若不成立,說明理由;②等式()2+=+()2(m,n為任意實數(shù),且n≠0)成立嗎?若成立,請寫出一個這種形式的等式(要求m,n中至少有一個為無理數(shù));若不成立,說明理由.18.(8分)已知二次函數(shù)的圖象如圖6所示,它與軸的一個交點坐標(biāo)為,與軸的交點坐標(biāo)為(0,3).求出此二次函數(shù)的解析式;根據(jù)圖象,寫出函數(shù)值為正數(shù)時,自變量的取值范圍.19.(8分)如圖,直線l是線段MN的垂直平分線,交線段MN于點O,在MN下方的直線l上取一點P,連接PN,以線段PN為邊,在PN上方作正方形NPAB,射線MA交直線l于點C,連接BC.(1)設(shè)∠ONP=α,求∠AMN的度數(shù);(2)寫出線段AM、BC之間的等量關(guān)系,并證明.20.(8分)已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=40°.(1)如圖1,若D為弧AB的中點,求∠ABC和∠ABD的度數(shù);(2)如圖2,過點D作⊙O的切線,與AB的延長線交于點P,若DP∥AC,求∠OCD的度數(shù).21.(8分)如圖,以△ABC的一邊AB為直徑作⊙O,⊙O與BC邊的交點D恰好為BC的中點,過點D作⊙O的切線交AC邊于點E.(1)求證:DE⊥AC;(2)連結(jié)OC交DE于點F,若,求的值.22.(10分)一個不透明的袋子中裝有3個標(biāo)號分別為1、2、3的完全相同的小球,隨機地摸出一個小球不放回,再隨機地摸出一個小球.采用樹狀圖或列表法列出兩次摸出小球出現(xiàn)的所有可能結(jié)果;求摸出的兩個小球號碼之和等于4的概率.23.(12分)如圖,在△ABC中,∠C=90°,以AB上一點O為圓心,OA長為半徑的圓恰好與BC相切于點D,分別交AC,AB于點E,F(xiàn).(1)若∠B=30°,求證:以A,O,D,E為頂點的四邊形是菱形;(2)填空:若AC=6,AB=10,連接AD,則⊙O的半徑為,AD的長為.24.為了提高服務(wù)質(zhì)量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數(shù)量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.(1)甲、乙兩種套房每套提升費用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?(3)在(2)的條件下,根據(jù)市場調(diào)查,每套乙種套房的提升費用不會改變,每套甲種套房提升費用將會提高a萬元(a>0),市政府如何確定方案才能使費用最少?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由俯視圖易得幾何體的底面為圓,還有表示錐頂?shù)膱A心,符合題意的只有圓錐.故選D.【點睛】本題考查由三視圖確定幾何體的形狀,主要考查學(xué)生空間想象能力以及對立體圖形的認(rèn)識.2、D【解析】試題分析:根據(jù)軸對稱圖形和中心對稱圖形的概念,可知:A既不是軸對稱圖形,也不是中心對稱圖形,故不正確;B不是軸對稱圖形,但是中心對稱圖形,故不正確;C是軸對稱圖形,但不是中心對稱圖形,故不正確;D即是軸對稱圖形,也是中心對稱圖形,故正確.故選D.考點:軸對稱圖形和中心對稱圖形識別3、C【解析】分析:根據(jù)每個選項所涉及的數(shù)學(xué)知識進行分析判斷即可.詳解:A選項中,“五邊形的外角和為360°”是真命題,故不能選A;B選項中,“切線垂直于經(jīng)過切點的半徑”是真命題,故不能選B;C選項中,因為點(3,-2)關(guān)于y軸的對稱點的坐標(biāo)是(-3,-2),所以該選項中的命題是假命題,所以可以選C;D選項中,“拋物線y=x2﹣4x+2017對稱軸為直線x=2”是真命題,所以不能選D.故選C.點睛:熟記:(1)凸多邊形的外角和都是360°;(2)切線的性質(zhì);(3)點P(a,b)關(guān)于y軸的對稱點為(-a,b);(4)拋物線的對稱軸是直線:等數(shù)學(xué)知識,是正確解答本題的關(guān)鍵.4、B【解析】

連接FC,先證明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根據(jù)點F是□ABCD的邊AD上的三等分點得出S△FCD=2S△AFC,四邊形CDFE的面積=S△FCD+S△EFC,再代入△AEF的面積為2即可求出四邊形CDFE的面積.【詳解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴==,∵△AEF與△EFC高相等,∴S△EFC=3S△AEF,∵點F是□ABCD的邊AD上的三等分點,∴S△FCD=2S△AFC,∵△AEF的面積為2,∴四邊形CDFE的面積=S△FCD+S△EFC=16+6=22.故選B.【點睛】本題考查了相似三角形的應(yīng)用與三角形的面積,解題的關(guān)鍵是熟練的掌握相似三角形的應(yīng)用與三角形的面積的相關(guān)知識點.5、D【解析】

根據(jù)題意可以用相應(yīng)的代數(shù)式表示出去年二月份之前房價,本題得以解決.【詳解】由題意可得,去年二月份之前房價為:x÷(1﹣30%)÷(1+40%)=,故選:D.【點睛】本題考查了列代數(shù)式,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的代數(shù)式.6、A【解析】

此題為數(shù)學(xué)知識的應(yīng)用,由題意設(shè)一個停靠點,為使所有的人步行到??奎c的路程之和最小,肯定要盡量縮短兩地之間的里程,就用到兩點間線段最短定理.【詳解】解:①以點A為??奎c,則所有人的路程的和=15×100+10×300=1(米),②以點B為??奎c,則所有人的路程的和=30×100+10×200=5000(米),③以點C為??奎c,則所有人的路程的和=30×300+15×200=12000(米),④當(dāng)在AB之間??繒r,設(shè)停靠點到A的距離是m,則(0<m<100),則所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤當(dāng)在BC之間停靠時,設(shè)停靠點到B的距離為n,則(0<n<200),則總路程為30(100+n)+15n+10(200﹣n)=5000+35n>1.∴該??奎c的位置應(yīng)設(shè)在點A;故選A.【點睛】此題為數(shù)學(xué)知識的應(yīng)用,考查知識點為兩點之間線段最短.7、A【解析】

關(guān)于y軸對稱的點的坐標(biāo)特征是縱坐標(biāo)不變,橫坐標(biāo)變?yōu)橄喾磾?shù).【詳解】點M(1,2)關(guān)于y軸對稱點的坐標(biāo)為(-1,2)【點睛】本題考查關(guān)于坐標(biāo)軸對稱的點的坐標(biāo)特征,牢記關(guān)于坐標(biāo)軸對稱的點的性質(zhì)是解題的關(guān)鍵.8、A【解析】分析:根據(jù)相反數(shù)的定義結(jié)合實數(shù)的性質(zhì)進行分析判斷即可.詳解:的相反數(shù)是.故選A.點睛:熟記相反數(shù)的定義:“只有符號不同的兩個數(shù)(實數(shù))互為相反數(shù)”是正確解答這類題的關(guān)鍵.9、A【解析】

分析出此三棱柱的立體圖像即可得出答案.【詳解】由三視圖可知主視圖為一個側(cè)面,另外兩個側(cè)面全等,是長×高=×4=,所以側(cè)面積之和為×2+4×4=16+16,所以答案選擇A項.【點睛】本題考查了由三視圖求側(cè)面積,畫出該圖的立體圖形是解決本題的關(guān)鍵.10、D【解析】

連接CO,由直徑AB平分弦CD及垂徑定理知∠COB=∠DOB,則∠A與∠COB互余,由圓周角定理知∠A=30°,∠COE=60°,則∠OCE=30°,設(shè)OE=x,則CO=2x,利用勾股定理即可求出x,再求出BE即可.【詳解】連接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=2∵∠A與∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,設(shè)OE=x,則CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(2)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故選D.【點睛】此題主要考查圓內(nèi)的綜合問題,解題的關(guān)鍵是熟知垂徑定理、圓周角定理及勾股定理.二、填空題(本大題共6個小題,每小題3分,共18分)11、x<1【解析】

根據(jù)一次函數(shù)的性質(zhì)得出不等式解答即可.【詳解】因為一次函數(shù)y=﹣2(x+1)+4的值是正數(shù),可得:﹣2(x+1)+4>0,解得:x<1,故答案為x<1.【點睛】本題考查了一次函數(shù)與一元一次不等式,根據(jù)題意正確列出不等式是解題的關(guān)鍵.12、1.【解析】

直接根據(jù)題意得出直角邊的比值,即可表示出各邊長進而得出答案.【詳解】如圖所示:∵坡度i=1:0.75,∴AC:BC=1:0.75=4:3,∴設(shè)AC=4x,則BC=3x,∴AB==5x,∵AB=20m,∴5x=20,解得:x=4,故3x=1,故這個物體在水平方向上前進了1m.故答案為:1.【點睛】此題主要考查坡度的運用,需注意的是坡度是坡角的正切值,是鉛直高度h和水平寬l的比,我們把斜坡面與水平面的夾角叫做坡角,若用α表示坡角,可知坡度與坡角的關(guān)系是.13、4【解析】

根據(jù)“距離坐標(biāo)”和平面直角坐標(biāo)系的定義分別寫出各點即可.【詳解】距離坐標(biāo)是(1,2)的點有(1,2),(-1,2),(-1,-2),(1,-2)共四個,所以答案填寫4.【點睛】本題考查了點的坐標(biāo),理解題意中距離坐標(biāo)是解題的關(guān)鍵.14、31°.【解析】試題分析:由AB∥CD,根據(jù)平行線的性質(zhì)得∠1=∠EFD=62°,然后根據(jù)角平分線的定義即可得到∠2的度數(shù).∵AB∥CD,∴∠1=∠EFD=62°,∵FG平分∠EFD,∴∠2=12∠EFD=1故答案是31°.考點:平行線的性質(zhì).15、7【解析】

首先利用從上面看而得出的俯視圖得出該幾何體的第一層是由幾個小正方體組成,然后進一步根據(jù)其從正面看得出的主視圖得知其第二層最多可以放幾個小正方體,然后進一步計算即可得出答案.【詳解】根據(jù)俯視圖可得出第一層由5個小正方體組成;再結(jié)合主視圖,該正方體第二層最多可放2個小正方體,∴,∴最多是7個,故答案為:7.【點睛】本題主要考查了三視圖的運用,熟練掌握三視圖的特性是解題關(guān)鍵.16、42【解析】

延長AB交DC于H,作EG⊥AB于G,則GH=DE=15米,EG=DH,設(shè)BH=x米,則CH=2.4x米,在Rt△BCH中,BC=13米,由勾股定理得出方程,解方程求出BH=5米,CH=12米,得出BG、EG的長度,證明△AEG是等腰直角三角形,得出AG=EG=12+20=32(米),即可得出大樓AB的高度.【詳解】延長AB交DC于H,作EG⊥AB于G,如圖所示:

則GH=DE=15米,EG=DH,

∵梯坎坡度i=1:2.4,

∴BH:CH=1:2.4,

設(shè)BH=x米,則CH=2.4x米,

在Rt△BCH中,BC=13米,

由勾股定理得:x2+(2.4x)2=132,

解得:x=5,

∴BH=5米,CH=12米,

∴BG=GH-BH=15-5=10(米),EG=DH=CH+CD=12+20=32(米),

∵∠α=45°,

∴∠EAG=90°-45°=45°,

∴△AEG是等腰直角三角形,

∴AG=EG=32(米),

∴AB=AG+BG=32+10=42(米);

故答案為42【點睛】本題考查了解直角三角形的應(yīng)用-坡度、俯角問題;通過作輔助線運用勾股定理求出BH,得出EG是解決問題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)()1+=+()1;;(1)()1+=+()1;;(3)①成立,理由見解析;②成立,理由見解析.【解析】

(1)根據(jù)題目中的等式列出相同特征的等式即可;(1)根據(jù)題意找出等式特征并用n表達即可;(3)①先后證明左右兩邊的等式的結(jié)果,如果結(jié)果相同則成立;②先證明等式是否成立,如果成立再根據(jù)等式的特征寫出m,n至少有一個為無理數(shù)的等式.【詳解】解:(1)具有上述特征的等式可以是()1+=+()1,故答案為()1+=+()1;(1)上述等式可表示為()1+=+()1,故答案為()1+=+()1;(3)①等式成立,證明:∵左邊=()1+=+=,右邊=+()1=,∴左邊=右邊,∴等式成立;②此等式也成立,例如:()1+=+()1.【點睛】本題考查了規(guī)律的知識點,解題的關(guān)鍵是根據(jù)題目中的等式找出其特征.18、(1);(2).【解析】

(1)將(-1,0)和(0,3)兩點代入二次函數(shù)y=-x2+bx+c,求得b和c;從而得出拋物線的解析式;

(2)令y=0,解得x1,x2,得出此二次函數(shù)的圖象與x軸的另一個交點的坐標(biāo),進而求出當(dāng)函數(shù)值y>0時,自變量x的取值范圍.【詳解】解:(1)由二次函數(shù)的圖象經(jīng)過和兩點,得,解這個方程組,得,拋物線的解析式為,(2)令,得.解這個方程,得,.∴此二次函數(shù)的圖象與軸的另一個交點的坐標(biāo)為.當(dāng)時,.【點睛】本題考查的知識點是二次函數(shù)的三種形式及待定系數(shù)法求二次函數(shù)解析式及拋物線與坐標(biāo)軸的交點,解題的關(guān)鍵是熟練的掌握二次函數(shù)的三種形式及待定系數(shù)法求二次函數(shù)解析式及拋物線與坐標(biāo)軸的交點.19、(1)45°(2),理由見解析【解析】

(1)由線段的垂直平分線的性質(zhì)可得PM=PN,PO⊥MN,由等腰三角形的性質(zhì)可得∠PMN=∠PNM=α,由正方形的性質(zhì)可得AP=PN,∠APN=90°,可得∠APO=α,由三角形內(nèi)角和定理可求∠AMN的度數(shù);(2)由等腰直角三角形的性質(zhì)和正方形的性質(zhì)可得,,∠MNC=∠ANB=45°,可證△CBN∽△MAN,可得.【詳解】解:(1)如圖,連接MP,∵直線l是線段MN的垂直平分線,∴PM=PN,PO⊥MN∴∠PMN=∠PNM=α∴∠MPO=∠NPO=90°-α,∵四邊形ABNP是正方形∴AP=PN,∠APN=90°∴AP=MP,∠APO=90°-(90°-α)=α∴∠APM=∠MPO-∠APO=(90°-α)-α=90°-2α,∵AP=PM∴,∴∠AMN=∠AMP-∠PMN=45°+α-α=45°(2)理由如下:如圖,連接AN,CN,∵直線l是線段MN的垂直平分線,∴CM=CN,∴∠CMN=∠CNM=45°,∴∠MCN=90°∴,∵四邊形APNB是正方形∴∠ANB=∠BAN=45°∴,∠MNC=∠ANB=45°∴∠ANM=∠BNC又∵∴△CBN∽△MAN∴∴【點睛】本題考查了正方形的性質(zhì),線段垂直平分線的性質(zhì),相似三角形的判定和性質(zhì),添加恰當(dāng)輔助線構(gòu)造相似三角形是本題的關(guān)鍵.20、(1)45°;(2)26°.【解析】

(1)根據(jù)圓周角和圓心角的關(guān)系和圖形可以求得∠ABC和∠ABD的大??;(2)根據(jù)題意和平行線的性質(zhì)、切線的性質(zhì)可以求得∠OCD的大?。驹斀狻浚?)∵AB是⊙O的直徑,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D為弧AB的中點,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)連接OD,∵DP切⊙O于點D,∴OD⊥DP,即∠ODP=90°,∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一個外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.【點睛】本題考查切線的性質(zhì)、圓周角定理,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.21、(1)證明見解析(2)【解析】

(1)連接OD,根據(jù)三角形的中位線定理可求出OD∥AC,根據(jù)切線的性質(zhì)可證明DE⊥OD,進而得證.(2)連接AD,根據(jù)等腰三角形的性質(zhì)及三角函數(shù)的定義用OB表示出OF、CF的長,根據(jù)三角函數(shù)的定義求解.【詳解】解:(1)連接OD.∵DE是⊙O的切線,∴DE⊥OD,即∠ODE=90°.∵AB是⊙O的直徑,∴O是AB的中點.又∵D是BC的中點,.∴OD∥AC.∴∠DEC=∠ODE=90°.∴DE⊥AC.(2)連接AD.∵OD∥AC,∴.∵AB為⊙O的直徑,∴∠ADB=∠ADC=90°.又∵D為BC的中點,∴AB=AC.∵sin∠ABC==,設(shè)AD=3x,則AB=AC=4x,OD=2x.∵DE⊥AC,∴∠ADC=∠AED=90°.∵∠DAC=∠EAD,∴△ADC∽△AED.∴.∴.∴.∴.∴.22、(1)見解析;(2).【解析】

(1)畫樹狀圖列舉出所有情況;

(2)讓摸出的兩個球號碼之和等于4的情況數(shù)除以總情況數(shù)即為所求的概率.【詳解】解:(1)根據(jù)題意,可以畫出如下的樹形圖:從樹形圖可以看出,兩次摸球出現(xiàn)的所有可能結(jié)果共有6種.(2)由樹狀圖知摸出的兩個小球號碼之和等于4的有2種結(jié)果,∴摸出的兩個小球號碼之和等于4的概率為=.【點睛】本題要查列表法與樹狀圖法求概率,列出樹狀圖得出所有等可能結(jié)果是解題關(guān)鍵.23、(1)見解析;(2)【解析】

(1)先通過證明△AOE為等邊三角形,得出AE=OD,再根據(jù)“同位角相等,兩直線平行”證明AE//OD,從而證得四邊形AODE是平行四邊形,再根據(jù)“一組鄰邊相等的平行四邊形為菱形”即可得證.(2)利用在Rt△OBD中,sin∠B==可得出半徑長度,在Rt△ODB中BD=,可求得BD的長,由CD=CB﹣BD可得CD的長,在RT△ACD中,AD=,即可求出AD長度.【詳解】解:(1)證明:連接OE、ED、OD,在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論