2023屆湖南長沙市雅禮洋湖實驗中學(xué)中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第1頁
2023屆湖南長沙市雅禮洋湖實驗中學(xué)中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第2頁
2023屆湖南長沙市雅禮洋湖實驗中學(xué)中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第3頁
2023屆湖南長沙市雅禮洋湖實驗中學(xué)中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第4頁
2023屆湖南長沙市雅禮洋湖實驗中學(xué)中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在平面直角坐標(biāo)系xOy中,等腰梯形ABCD的頂點坐標(biāo)分別為A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A為對稱中心作點P(0,2)的對稱點P1,以B為對稱中心作點P1的對稱點P2,以C為對稱中心作點P2的對稱點P3,以D為對稱中心作點P3的對稱點P4,…,重復(fù)操作依次得到點P1,P2,…,則點P2010的坐標(biāo)是()A.(2010,2) B.(2010,﹣2) C.(2012,﹣2) D.(0,2)2.下列運算正確的是()A.4x+5y=9xy B.(?m)3?m7=m10C.(x3y)5=x8y5 D.a(chǎn)12÷a8=a43.下列各式計算正確的是()A.a(chǎn)+3a=3a2 B.(–a2)3=–a6 C.a(chǎn)3·a4=a7 D.(a+b)2=a2–2ab+b24.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個結(jié)論:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中結(jié)論正確的個數(shù)是()A.1 B.2 C.3 D.45.矩形具有而平行四邊形不具有的性質(zhì)是()A.對角相等 B.對角線互相平分C.對角線相等 D.對邊相等6.若分式在實數(shù)范圍內(nèi)有意義,則實數(shù)的取值范圍是()A. B. C. D.7.為了解某班學(xué)生每周做家務(wù)勞動的時間,某綜合實踐活動小組對該班9名學(xué)生進行了調(diào)查,有關(guān)數(shù)據(jù)如下表.則這9名學(xué)生每周做家務(wù)勞動的時間的眾數(shù)及中位數(shù)分別是()每周做家務(wù)的時間(小時)01234人數(shù)(人)22311A.3,2.5 B.1,2 C.3,3 D.2,28.下列圖形都是由同樣大小的菱形按照一定規(guī)律所組成的,其中第①個圖形中一共有3個菱形,第②個圖形中一共有7個菱形,第③個圖形中一共有13個菱形,…,按此規(guī)律排列下去,第⑨個圖形中菱形的個數(shù)為()A.73 B.81 C.91 D.1099.?dāng)?shù)據(jù)4,8,4,6,3的眾數(shù)和平均數(shù)分別是()A.5,4 B.8,5 C.6,5 D.4,510.已知am=2,an=3,則a3m+2n的值是()A.24 B.36 C.72 D.6二、填空題(共7小題,每小題3分,滿分21分)11.計算:()0﹣=_____.12.如圖,已知函數(shù)y=3x+b和y=ax﹣3的圖象交于點P(﹣2,﹣5),則根據(jù)圖象可得不等式3x+b>ax﹣3的解集是_____.13.若二次根式有意義,則x的取值范圍為__________.14.函數(shù)y=的定義域是________.15.?dāng)?shù)據(jù)5,6,7,4,3的方差是.16.已知a、b是方程x2﹣2x﹣1=0的兩個根,則a2﹣a+b的值是_______.17.分解因式:a2-2ab+b2-1=______.三、解答題(共7小題,滿分69分)18.(10分)如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,拋物線y=ax2+bx+3交x軸于B、C兩點(點B在左,點C在右),交y軸于點A,且OA=OC,B(﹣1,0).(1)求此拋物線的解析式;(2)如圖2,點D為拋物線的頂點,連接CD,點P是拋物線上一動點,且在C、D兩點之間運動,過點P作PE∥y軸交線段CD于點E,設(shè)點P的橫坐標(biāo)為t,線段PE長為d,寫出d與t的關(guān)系式(不要求寫出自變量t的取值范圍);(3)如圖3,在(2)的條件下,連接BD,在BD上有一動點Q,且DQ=CE,連接EQ,當(dāng)∠BQE+∠DEQ=90°時,求此時點P的坐標(biāo).19.(5分)甲、乙兩人分別站在相距6米的A、B兩點練習(xí)打羽毛球,已知羽毛球飛行的路線為拋物線的一部分,甲在離地面1米的C處發(fā)出一球,乙在離地面1.5米的D處成功擊球,球飛行過程中的最高點H與甲的水平距離AE為4米,現(xiàn)以A為原點,直線AB為x軸,建立平面直角坐標(biāo)系(如圖所示).求羽毛球飛行的路線所在的拋物線的表達式及飛行的最高高度.20.(8分)如圖,點A在∠MON的邊ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.求證:四邊形ABCD是矩形;若DE=3,OE=9,求AB、AD的長.21.(10分)如圖,AB是⊙O直徑,BC⊥AB于點B,點C是射線BC上任意一點,過點C作CD切⊙O于點D,連接AD.求證:BC=CD;若∠C=60°,BC=3,求AD的長.22.(10分)如圖,已知△ABC,按如下步驟作圖:①分別以A、C為圓心,以大于12②連接MN,分別交AB、AC于點D、O;③過C作CE∥AB交MN于點E,連接AE、CD.(1)求證:四邊形ADCE是菱形;(2)當(dāng)∠ACB=90°,BC=6,△ADC的周長為18時,求四邊形ADCE的面積.23.(12分)益馬高速通車后,將桃江馬跡塘的農(nóng)產(chǎn)品運往益陽的運輸成本大大降低.馬跡塘一農(nóng)戶需要將A,B兩種農(nóng)產(chǎn)品定期運往益陽某加工廠,每次運輸A,B產(chǎn)品的件數(shù)不變,原來每運一次的運費是1200元,現(xiàn)在每運一次的運費比原來減少了300元,A,B兩種產(chǎn)品原來的運費和現(xiàn)在的運費(單位:元∕件)如下表所示:品種AB原來的運費4525現(xiàn)在的運費3020(1)求每次運輸?shù)霓r(nóng)產(chǎn)品中A,B產(chǎn)品各有多少件;(2)由于該農(nóng)戶誠實守信,產(chǎn)品質(zhì)量好,加工廠決定提高該農(nóng)戶的供貨量,每次運送的總件數(shù)增加8件,但總件數(shù)中B產(chǎn)品的件數(shù)不得超過A產(chǎn)品件數(shù)的2倍,問產(chǎn)品件數(shù)增加后,每次運費最少需要多少元.24.(14分)已知:如圖,在平行四邊形中,的平分線交于點,過點作的垂線交于點,交延長線于點,連接,.求證:;若,,,求的長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】分析:根據(jù)題意,以A為對稱中心作點P(0,1)的對稱點P1,即A是PP1的中點,結(jié)合中點坐標(biāo)公式即可求得點P1的坐標(biāo);同理可求得其它各點的坐標(biāo),分析可得規(guī)律,進而可得答案.詳解:根據(jù)題意,以A為對稱中心作點P(0,1)的對稱點P1,即A是PP1的中點,又∵A的坐標(biāo)是(1,1),結(jié)合中點坐標(biāo)公式可得P1的坐標(biāo)是(1,0);同理P1的坐標(biāo)是(1,﹣1),記P1(a1,b1),其中a1=1,b1=﹣1.根據(jù)對稱關(guān)系,依次可以求得:P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),令P6(a6,b1),同樣可以求得,點P10的坐標(biāo)為(4+a6,b1),即P10(4×1+a1,b1),∵1010=4×501+1,∴點P1010的坐標(biāo)是(1010,﹣1),故選:B.點睛:本題考查了對稱的性質(zhì),坐標(biāo)與圖形的變化---旋轉(zhuǎn),根據(jù)條件求出前邊幾個點的坐標(biāo),得到規(guī)律是解題關(guān)鍵.2、D【解析】

各式計算得到結(jié)果,即可作出判斷.【詳解】解:A、4x+5y=4x+5y,錯誤;B、(-m)3?m7=-m10,錯誤;C、(x3y)5=x15y5,錯誤;D、a12÷a8=a4,正確;故選D.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.3、C【解析】

根據(jù)合并同類項、冪的乘方、同底數(shù)冪的乘法、完全平方公式逐項計算即可.【詳解】A.a+3a=4a,故不正確;B.(–a2)3=(-a)6,故不正確;C.a3·a4=a7,故正確;D.(a+b)2=a2+2ab+b2,故不正確;故選C.【點睛】本題考查了合并同類項、冪的乘方、同底數(shù)冪的乘法、完全平方公式,熟練掌握各知識點是解答本題的關(guān)鍵.4、C【解析】

試題解析:∵圖象與x軸有兩個交點,∴方程ax2+bx+c=0有兩個不相等的實數(shù)根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正確;∵﹣=﹣1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正確;∵當(dāng)x=﹣2時,y>0,∴4a﹣2b+c>0,∴4a+c>2b,③錯誤;∵由圖象可知x=﹣1時該二次函數(shù)取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④正確∴正確的有①②④三個,故選C.考點:二次函數(shù)圖象與系數(shù)的關(guān)系.【詳解】請在此輸入詳解!5、C【解析】試題分析:舉出矩形和平行四邊形的所有性質(zhì),找出矩形具有而平行四邊形不具有的性質(zhì)即可.解:矩形的性質(zhì)有:①矩形的對邊相等且平行,②矩形的對角相等,且都是直角,③矩形的對角線互相平分、相等;平行四邊形的性質(zhì)有:①平行四邊形的對邊分別相等且平行,②平行四邊形的對角分別相等,③平行四邊形的對角線互相平分;∴矩形具有而平行四邊形不一定具有的性質(zhì)是對角線相等,故選C.6、D【解析】

根據(jù)分式有意義的條件即可求出答案.【詳解】解:由分式有意義的條件可知:,,故選:.【點睛】本題考查分式有意義的條件,解題的關(guān)鍵是熟練運用分式有意義的條件,本題屬于基礎(chǔ)題型.7、D【解析】試題解析:表中數(shù)據(jù)為從小到大排列.?dāng)?shù)據(jù)1小時出現(xiàn)了三次最多為眾數(shù);1處在第5位為中位數(shù).所以本題這組數(shù)據(jù)的中位數(shù)是1,眾數(shù)是1.故選D.考點:1.眾數(shù);1.中位數(shù).8、C【解析】試題解析:第①個圖形中一共有3個菱形,3=12+2;第②個圖形中共有7個菱形,7=22+3;第③個圖形中共有13個菱形,13=32+4;…,第n個圖形中菱形的個數(shù)為:n2+n+1;第⑨個圖形中菱形的個數(shù)92+9+1=1.故選C.考點:圖形的變化規(guī)律.9、D【解析】

根據(jù)眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù),再根據(jù)平均數(shù)的計算公式求出平均數(shù)即可【詳解】∵4出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,∴眾數(shù)是4;這組數(shù)據(jù)的平均數(shù)是:(4+8+4+6+3)÷5=5;故選D.10、C【解析】試題解析:∵am=2,an=3,

∴a3m+2n

=a3m?a2n

=(am)3?(an)2

=23×32

=8×9

=1.故選C.二、填空題(共7小題,每小題3分,滿分21分)11、-1【解析】

本題需要運用零次冪的運算法則、立方根的運算法則進行計算.【詳解】由分析可得:()0﹣=1-2=﹣1.【點睛】熟練運用零次冪的運算法則、立方根的運算法則是本題解題的關(guān)鍵.12、x>﹣1.【解析】

根據(jù)函數(shù)y=3x+b和y=ax-3的圖象交于點P(-1,-5),然后根據(jù)圖象即可得到不等式

3x+b>ax-3的解集.【詳解】解:∵函數(shù)y=3x+b和y=ax-3的圖象交于點P(-1,-5),∴不等式

3x+b>ax-3的解集是x>-1,故答案為:x>-1.【點睛】本題考查一次函數(shù)與一元一次不等式、一次函數(shù)的圖象,熟練掌握是解題的關(guān)鍵.13、x≥﹣.【解析】

考點:二次根式有意義的條件.根據(jù)二次根式的意義,被開方數(shù)是非負(fù)數(shù)求解.解:根據(jù)題意得:1+2x≥0,解得x≥-.故答案為x≥-.14、【解析】分析:根據(jù)分式有意義的條件是分母不為0,即可求解.詳解:由題意得:x-2≠0,即.故答案為點睛:本題考查了使函數(shù)有意義的自變量的取值范圍的確定.函數(shù)是整式型,自變量去全體實數(shù);函數(shù)是分式型,自變量是使分母不為0的實數(shù);根式型的函數(shù)的自變量去根號下的式子大于或等于0的實數(shù);當(dāng)函數(shù)關(guān)系式表示實際問題時,自變量不僅要使函數(shù)關(guān)系式有意義,還要使實際問題有意義.15、1【解析】

先求平均數(shù),再根據(jù)方差的公式S1=[(x1-)1+(x1-)1+…+(xn-)1]計算即可.【詳解】解:∵=(5+6+7+4+3)÷5=5,∴數(shù)據(jù)的方差S1=×[(5-5)1+(6-5)1+(7-5)1+(4-5)1+(3-5)1]=1.故答案為:1.考點:方差.16、1【解析】

根據(jù)一元二次方程的解及根與系數(shù)的關(guān)系,可得出a2-2a=1、a+b=2,將其代入a2-a+b中即可求出結(jié)論.【詳解】∵a、b是方程x2-2x-1=0的兩個根,∴a2-2a=1,a+b=2,∴a2-a+b=a2-2a+(a+b)=1+2=1.故答案為1.【點睛】本題考查根與系數(shù)的關(guān)系以及一元二次方程的解,牢記兩根之和等于-、兩根之積等于是解題的關(guān)鍵.17、(a-b+1)(a-b-1)【解析】

當(dāng)被分解的式子是四項時,應(yīng)考慮運用分組分解法進行分解,前三項a2-2ab+b2可組成完全平方公式,再和最后一項用平方差公式分解.【詳解】a2-2ab+b2-1,

=(a-b)2-1,

=(a-b+1)(a-b-1).【點睛】本題考查用分組分解法進行因式分解.難點是采用兩兩分組還是三一分組.本題前三項可組成完全平方公式,可把前三項分為一組,分解一定要徹底.三、解答題(共7小題,滿分69分)18、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).【解析】

(1)由拋物線y=ax2+bx+3與y軸交于點A,可求得點A的坐標(biāo),又OA=OC,可求得點C的坐標(biāo),然后分別代入B,C的坐標(biāo)求出a,b,即可求得二次函數(shù)的解析式;(2)首先延長PE交x軸于點H,現(xiàn)將解析式換為頂點解析式求得D(1,4),設(shè)直線CD的解析式為y=kx+b,再將點C(3,0)、D(1,4)代入,得y=﹣2x+6,則E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根據(jù)d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于點K,作QM∥x軸交DK于點T,延長PE、EP交OC于H、交QM于M,作ER⊥DK于點R,記QE與DK的交點為N,根據(jù)題意在(2)的條件下先證明△DQT≌△ECH,再根據(jù)全等三角形的性質(zhì)即可得ME=4﹣2(﹣2t+6),QM=t﹣1+(3﹣t),即可求得答案.【詳解】解:(1)當(dāng)x=0時,y=3,∴A(0,3)即OA=3,∵OA=OC,∴OC=3,∴C(3,0),∵拋物線y=ax2+bx+3經(jīng)過點B(﹣1,0),C(3,0)∴,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)如圖1,延長PE交x軸于點H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線CD的解析式為y=kx+b,將點C(3,0)、D(1,4)代入,得:,解得:,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;(3)如圖2,作DK⊥OC于點K,作QM∥x軸交DK于點T,延長PE、EP交OC于H、交QM于M,作ER⊥DK于點R,記QE與DK的交點為N,∵D(1,4),B(﹣1,0),C(3,0),∴BK=2,KC=2,∴DK垂直平分BC,∴BD=CD,∴∠BDK=∠CDK,∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,∴∠CDK+∠DEQ=45°,即∠RNE=45°,∵ER⊥DK,∴∠NER=45°,∴∠MEQ=∠MQE=45°,∴QM=ME,∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,∴△DQT≌△ECH,∴DT=EH,QT=CH,∴ME=4﹣2(﹣2t+6),QM=MT+QT=MT+CH=t﹣1+(3﹣t),4﹣2(﹣2t+6)=t﹣1+(3﹣t),解得:t=,∴P(,).【點睛】本題考查了二次函數(shù)的綜合題,解題的關(guān)鍵是熟練的掌握二次函數(shù)的相關(guān)知識點.19、米.【解析】

先求拋物線對稱軸,再根據(jù)待定系數(shù)法求拋物線解析式,再求函數(shù)最大值.【詳解】由題意得:C(0,1),D(6,1.5),拋物線的對稱軸為直線x=4,設(shè)拋物線的表達式為:y=ax2+bx+1(a≠0),則據(jù)題意得:,解得:,∴羽毛球飛行的路線所在的拋物線的表達式為:y=﹣x2+x+1,∵y=﹣(x﹣4)2+,∴飛行的最高高度為:米.【點睛】本題考核知識點:二次函數(shù)的應(yīng)用.解題關(guān)鍵點:熟記二次函數(shù)的基本性質(zhì).20、(1)證明見解析;(2)AB、AD的長分別為2和1.【解析】

(1)證Rt△ABO≌Rt△DEA(HL)得∠AOB=∠DAE,AD∥BC.證四邊形ABCD是平行四邊形,又,故四邊形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,AB=DE=2.設(shè)AD=x,則OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:.【詳解】(1)證明:∵AB⊥OM于B,DE⊥ON于E,∴.在Rt△ABO與Rt△DEA中,∵∴Rt△ABO≌Rt△DEA(HL).∴∠AOB=∠DAE.∴AD∥BC.又∵AB⊥OM,DC⊥OM,∴AB∥DC.∴四邊形ABCD是平行四邊形.∵,∴四邊形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,∴AB=DE=2.設(shè)AD=x,則OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:,解得.∴AD=1.即AB、AD的長分別為2和1.【點睛】矩形的判定和性質(zhì);掌握判斷定證三角形全等是關(guān)鍵.21、(1)證明見解析;(2).【解析】

(1)根據(jù)切線的判定定理得到BC是⊙O的切線,再利用切線長定理證明即可;(2)根據(jù)含30°的直角三角形的性質(zhì)、正切的定義計算即可.【詳解】(1)∵AB是⊙O直徑,BC⊥AB,∴BC是⊙O的切線,∵CD切⊙O于點D,∴BC=CD;(2)連接BD,∵BC=CD,∠C=60°,∴△BCD是等邊三角形,∴BD=BC=3,∠CBD=60°,∴∠ABD=30°,∵AB是⊙O直徑,∴∠ADB=90°,∴AD=BD?tan∠ABD=.【點睛】本題考查了切線的性質(zhì)、直角三角形的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.22、(1)詳見解析;(2)1.【解析】

(1)利用直線DE是線段AC的垂直平分線,得出AC⊥DE,即∠AOD=∠COE=90°,從而得出△AOD≌△COE,即可得出四邊形ADCE是菱形.

(2)利用當(dāng)∠ACB=90°時,OD∥BC,即有△ADO∽△ABC,即可由相似三角形的性質(zhì)和勾股定理得出OD和AO的長,即根據(jù)菱形的性質(zhì)得出四邊形ADCE的面積.【詳解】(1)證明:由題意可知:∵分別以A、C為圓心,以大于12∴直線DE是線段AC的垂直平分線,∴AC⊥DE,即∠AOD=∠COE=90°;且AD=CD、AO=CO,又∵CE∥AB,∴∠1=∠2,在△AOD和△COE中∠1=∠2∠AOD=∠COE=∴△AOD≌△COE(AAS),∴OD=OE,∵A0=CO,DO=EO,∴四邊形ADCE是平行四邊形,又∵AC⊥DE,∴四邊形ADCE是菱形;(2)解:當(dāng)∠ACB=90°時,OD∥BC,即有△ADO∽△ABC,∴ODBC又∵BC=6,∴OD=3,又∵△ADC的周長為18,∴AD+AO=9,即AD=9﹣AO,∴OD=A可得AO=4,∴DE=6,AC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論