浙江省杭州七縣區(qū)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末經(jīng)典試題含解析_第1頁
浙江省杭州七縣區(qū)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末經(jīng)典試題含解析_第2頁
浙江省杭州七縣區(qū)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末經(jīng)典試題含解析_第3頁
浙江省杭州七縣區(qū)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末經(jīng)典試題含解析_第4頁
浙江省杭州七縣區(qū)2022-2023學(xué)年數(shù)學(xué)高一第二學(xué)期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知之間的幾組數(shù)據(jù)如下表:

1

2

3

4

5

6

0

2

1

3

3

4

假設(shè)根據(jù)上表數(shù)據(jù)所得線性回歸直線方程為中的前兩組數(shù)據(jù)和求得的直線方程為則以下結(jié)論正確的是()A. B. C. D.2.已知銳角三角形的邊長分別為1,3,,則的取值范圍是()A. B. C. D.3.的斜二測直觀圖如圖所示,則原的面積為()A. B.1 C. D.24.若函數(shù)局部圖象如圖所示,則函數(shù)的解析式為A. B.C. D.5.下列說法正確的是()A.命題“若,則.”的否命題是“若,則.”B.是函數(shù)在定義域上單調(diào)遞增的充分不必要條件C.D.若命題,則6.在中,,則的形狀是()A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰或直角三角形7.將函數(shù)y=sinx-πA.y=sin1C.y=sin18.關(guān)于的不等式的解集中,恰有3個整數(shù),則的取值范圍是()A. B.C. D.9.直線l:的傾斜角為()A. B. C. D.10.如圖所示,從氣球上測得正前方的河流的兩岸,的俯角分別為,,此時氣球的高度是60m,則河流的寬度等于()A.m B.m C.m D.m二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)的圖象如下,則的值為__________.12.設(shè)是等差數(shù)列的前項和,若,則___________.13.已知點A(-a,0),B(a,0)(a>0),若圓(x-2)2+(y-2)2=2上存在點C14.正方形和內(nèi)接于同一個直角三角形ABC中,如圖所示,設(shè),若兩正方形面積分別為=441,=440,則=______15.已知,向量的夾角為,則的最大值為_____.16.設(shè)向量,,______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足:.(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項;(2)求數(shù)列的前項和.18.已知數(shù)列滿足.證明數(shù)列為等差數(shù)列;求數(shù)列的通項公式.19.如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面,垂直于和,為棱上的點,,.(1)若為棱的中點,求證://平面;(2)當(dāng)時,求平面與平面所成的銳二面角的余弦值;(3)在第(2)問條件下,設(shè)點是線段上的動點,與平面所成的角為,求當(dāng)取最大值時點的位置.20.已知函數(shù).(1)當(dāng)時,解不等式;(2)若不等式對恒成立,求m的取值范圍.21.已知.(Ⅰ)化簡;(Ⅱ)已知,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】b′=2,a′=-2,由公式=求得.=,=-=-×=-,∴<b′,>a′2、B【解析】

根據(jù)大邊對大角定理知邊長為所對的角不是最大角,只需對其他兩條邊所對的利用余弦定理,即這兩角的余弦值為正,可求出的取值范圍.【詳解】由題意知,邊長為所對的角不是最大角,則邊長為或所對的角為最大角,只需這兩個角為銳角即可,則這兩個角的余弦值為正數(shù),于此得到,由于,解得,故選C.【點睛】本題考查余弦定理的應(yīng)用,在考查三角形是銳角三角形、直角三角形還是鈍角三角形,一般由最大角來決定,并利用余弦定理結(jié)合余弦值的符號來進(jìn)行轉(zhuǎn)化,其關(guān)系如下:為銳角;為直角;為鈍角.3、D【解析】

根據(jù)直觀圖可計算其面積為,原的面積為,由得結(jié)論.【詳解】由題意可得,所以由,即.故選:D.【點睛】本題考查了斜二側(cè)畫直觀圖,三角形的面積公式,需要注意的是與原圖與直觀圖的面積之比為,屬于基礎(chǔ)題.4、D【解析】

由的部分圖象可求得A,T,從而可得,再由,結(jié)合的范圍可求得,從而可得答案.【詳解】,;又由圖象可得:,可得:,,,.,,又,當(dāng)時,可得:,此時,可得:故選D.【點睛】本題考查由的部分圖象確定函數(shù)解析式,常用五點法求得的值,屬于中檔題.5、D【解析】“若p則q”的否命題是“若則”,所以A錯。在定義上并不是單調(diào)遞增函數(shù),所以B錯。不存在,C錯。全稱性命題的否定是特稱性命題,D對,選D.6、B【解析】

將,分別代入中,整理可得,即可得到,進(jìn)而得到結(jié)論【詳解】由題可得,即在中,,,即又,是直角三角形,故選B【點睛】本題考查三角形形狀的判定,考查和角公式,考查已知三角函數(shù)值求角7、C【解析】

將函數(shù)y=sin(x-π3)的圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變)得到y(tǒng)=sin(12x-π3),再向左平移π3個單位得到的解析式為y=sin(12(x+π3)-8、C【解析】

首先將原不等式轉(zhuǎn)化為,然后對進(jìn)行分類討論,再結(jié)合不等式解集中恰有3個整數(shù),列出關(guān)于的條件,求解即可.【詳解】關(guān)于的不等式等價于當(dāng)時,即時,于的不等式的解集為,要使解集中恰有3個整數(shù),則;當(dāng)時,即時,于的不等式的解集為,不滿足題意;當(dāng)時,即時,于的不等式的解集為,要使解集中恰有3個整數(shù),則;綜上,.故選:C.【點睛】本題主要考了一元二次不等式的解法以及分類討論思想,屬于中檔題.9、C【解析】

由直線的斜率,又,再求解即可.【詳解】解:由直線l:,則直線的斜率,又,所以,即直線l:的傾斜角為,故選:C.【點睛】本題考查了直線傾斜角的求法,屬基礎(chǔ)題.10、A【解析】

在直角三角形中,利用銳角三角函數(shù)求出的長,在直角三角形中,利用銳角三角函數(shù)求出的長,最后利用進(jìn)行求解即可.【詳解】在直角三角形中,.在直角三角形中,.所以有.故選:A【點睛】本題考查了銳角三角函數(shù)的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由函數(shù)的圖象的頂點坐標(biāo)求出,由半個周期求出,最后將特殊點的坐標(biāo)求代入解析式,即可求得的值.【詳解】解:由圖象可得,,得.,將點代入函數(shù)解析式,得,,,又因為,所以故答案為:【點睛】本題考查由的部分圖象確定其解析式.(1)根據(jù)函數(shù)的最高點的坐標(biāo)確定(2)根據(jù)函數(shù)零點的坐標(biāo)確定函數(shù)的周期求(3)利用最值點的坐標(biāo)同時求的取值,即可得到函數(shù)的解析式.12、1.【解析】

由已知結(jié)合等差數(shù)列的性質(zhì)求得,代入等差數(shù)列的前項和得答案.【詳解】解:在等差數(shù)列中,由,得,,則,故答案為:1.【點睛】本題主要考查等差數(shù)列的通項公式,考查等差數(shù)列的性質(zhì),考查了等差數(shù)列前項和的求法,屬于基礎(chǔ)題.13、3【解析】

利用參數(shù)方程假設(shè)C點坐標(biāo),表示出AC和BC,利用AC?BC=0可得到a【詳解】設(shè)C∴∵∠ACB=90°∴∴當(dāng)sinα+∴0<a≤3本題正確結(jié)果:3【點睛】本題考查圓中參數(shù)范圍求解的問題,關(guān)鍵是能夠利用圓的參數(shù)方程,利用向量數(shù)量積及三角函數(shù)關(guān)系求得最值.14、【解析】

首先根據(jù)在正方形S1和S2內(nèi),S1=441,S2=440,分別求出兩個正方形的邊長,然后分別表示出AF、FC、AM、MC的長度,最后根據(jù)AF+FC=AM+MC,列出關(guān)于α的三角函數(shù)等式,求出sin2α的值即可.【詳解】因為S1=441,S2=440,所以FD21,MQ=MN,因為AC=AF+FC2121,AC=AM+MCMNcosαcosα,所以:21cosα,整理,可得:(sinαcosα+1)=21(sinα+cosα),兩邊平方,可得110sin22α﹣sin2α﹣1=0,解得sin2α或sin2α(舍去),故sin2α.故答案為:.【點睛】本題主要考查了三角函數(shù)的求值問題,考查了正方形、直角三角形的性質(zhì),屬于中檔題,解答此題的關(guān)鍵是分別表示出AF、FC、AM、MC的長度,最后根據(jù)AF+FC=AM+MC,列出關(guān)于α的三角函數(shù)等式.15、【解析】

將兩邊平方,化簡后利用基本不等式求得的最大值.【詳解】將兩邊平方并化簡得,由基本不等式得,故,即,即,所以的最大值為.【點睛】本小題主要考查平面向量模的運(yùn)算,考查利用基本不等式求最值,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.16、【解析】

利用向量夾角的坐標(biāo)公式即可計算.【詳解】.【點睛】本題主要考查了向量夾角公式的坐標(biāo)運(yùn)算,屬于容易題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解析】

(1)由變形得,即,從而可證得結(jié)論成立,進(jìn)而可求出通項公式;(2)由(1)及條件可求出,然后根據(jù)分組求和法可得.【詳解】(1)證明:因為,所以.因為所以所以.又,所以是首項為,公比為2的等比數(shù)列,所以.(2)解:由(1)可得,所以.【點睛】證明數(shù)列為等比數(shù)列時,在得到后,不要忘了說明數(shù)列中沒有零項這一步驟.另外,對于數(shù)列的求和問題,解題時要根據(jù)通項公式的特點選擇合適的方法進(jìn)行求解,屬于基礎(chǔ)題.18、(1)見解析;(2)【解析】

(1)已知遞推關(guān)系取倒數(shù),利用等差數(shù)列的定義,即可證明.(2)由(1)可知數(shù)列為等差數(shù)列,確定數(shù)列的通項公式,即可求出數(shù)列的通項公式.【詳解】證明:,且有,,又,,即,且,是首項為1,公差為的等差數(shù)列.解:由知,即,所以.【點睛】本題考查數(shù)列遞推關(guān)系、等差數(shù)列的判斷方法,考查了運(yùn)用取倒數(shù)法求數(shù)列的通項公式,考查了推理能力和計算能力,屬于中檔題.19、(1)見解析;(2);(3)即點N在線段CD上且【解析】

(1)取線段SC的中點E,連接ME,ED.可證是平行四邊形,從而有,則可得線面平行;(2)以點A為坐標(biāo)原點,建立分別以AD、AB、AS所在的直線為x軸、y軸、z軸建立空間直角坐標(biāo)系,求出兩平面與平面的法向量,由法向量夾角的余弦值可得二面角的余弦值;(3)設(shè),其中,求出,由MN與平面所成角的正弦值為與平面的法向量夾角余弦值的絕對值可求得結(jié)論.【詳解】(1)證明:取線段SC的中點E,連接ME,ED.在中,ME為中位線,∴且,∵且,∴且,∴四邊形AMED為平行四邊形.∴.∵平面SCD,平面SCD,∴平面SCD.(2)解:如圖所示以點A為坐標(biāo)原點,建立分別以AD、AB、AS所在的直線為x軸、y軸、z軸建立空間直角坐標(biāo)系,則,,,,,由條件得M為線段SB近B點的三等分點.于是,即,設(shè)平面AMC的一個法向量為,則,將坐標(biāo)代入并取,得.另外易知平面SAB的一個法向量為,所以平面AMC與平面SAB所成的銳二面角的余弦為.(3)設(shè),其中.由于,所以.所以,可知當(dāng),即時分母有最小值,此時有最大值,此時,,即點N在線段CD上且.【點睛】本題考查線面平行的證明,考查求二面角與線面角.求空間角時,一般建立空間直角坐標(biāo)系,由平面法向量的夾角求得二面角,由直線的方向向量與平面法向量的夾角與線面角互余可求得線面角.20、(1)見解析;(2)【解析】

(1)當(dāng)m>﹣2時,f(x)≥m;即(m+1)x2﹣mx+m﹣1≥m,因式分解,對m進(jìn)行討論,可得解集;(2)轉(zhuǎn)化為x∈[﹣1,1]恒成立,分離參數(shù),利用基本不等式求最值求解m的取值范圍.【詳解】(1)當(dāng)時,;即.可得:.∵①當(dāng)時,即.不等式的解集為②當(dāng)時,.∵,∴不等式的解集為③當(dāng)時,.∵,∴不等式的解集

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論