版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年八下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.直角坐標系中,點P(x,y)在第三象限,且P到x軸和y軸的距離分別為3、4,則點P的坐標為()A.(-3,-4) B.(3,4) C.(-4,-3) D.(4,3)2.一次函數(shù)y=3x+b和y=ax-3的圖象如圖所示,其交點為P(-2,-5),則不等式3x+b>ax-3的解集在數(shù)軸上表示正確的是()A. B.C. D.3.如圖,在△ABC中,∠ACB=90°,D是BC的中點,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,下列說法:四邊形ACED是平行四邊形,△BCE是等腰三角形,四邊形ACEB的周長是10+2,④四邊形ACEB的面積是16.正確的個數(shù)是()A.2個 B.3個 C.4個 D.5個4.若關于x的一元二次方程x2﹣ax=0的一個解是﹣1,則a的值為()A.1 B.﹣2 C.﹣1 D.25.將下列長度的三根木棒首尾順次連接,能組成直角三角形的是()A.1,2,3 B.4,6,8 C.6,8,10 D.5,5,46.如圖,在四邊形ABCD中,∠A=60°,∠B=∠D=90°,AD=8,AB=7,則BC+CD等于()A.6 B.5 C.4 D.37.函數(shù)的圖象經(jīng)過點,的值是()A. B. C. D.8.下列四個二次根式中,是最簡二次根式的是()A. B. C. D.9.關于的一元二次方程有兩個實數(shù)根,則的取值范圍是()A. B. C.且 D.且10.下列事件屬于必然事件的是()A.拋擲兩枚硬幣,結(jié)果一正一反B.取一個實數(shù)的值為1C.取一個實數(shù)D.角平分線上的點到角的兩邊的距離相等二、填空題(每小題3分,共24分)11.如圖,已知在?ABCD中,∠B=60°,AB=4,BC=8,則?ABCD的面積=_____.12.如圖,?ABCD中,∠DAB=30°,AB=6,BC=2,P為邊CD上的一動點,則2PB+PD的最小值等于______.13.將正比例函數(shù)的圖象向右平移2個單位,則平移后所得到圖象對應的函數(shù)解析式是__________.14.已知反比例函數(shù)y=的圖像都過A(1,3)則m=______.15.八年級(3)班共有學生50人,如圖是該班一次信息技術模擬測試成績的頻數(shù)分布直方圖(滿分為50分,成績均為整數(shù)),若不低于30分為合格,則該班此次成績達到合格的同學占全班人數(shù)的百分比是__________.16.已知正方形,以為頂角,邊為腰作等腰,連接,則__________.17.某市對400名年滿15歲的男生的身高進行了測量,結(jié)果身高(單位:m)在1.68~1.70這一小組的頻率為0.25,則該組的人數(shù)為_____.18.如圖,是某地區(qū)5月份某周的氣溫折線圖,則這個地區(qū)這個周的氣溫的極差是_____℃.三、解答題(共66分)19.(10分)已知,如圖:在平面直角坐標系中,O為坐標原點,四邊形OABC是矩形,點A、C的坐標分別為、,點D是OA的中點,點P在BC邊上運動,當是等腰三角形時,點Р的坐標為_______________.20.(6分)先化簡,再求值:(x+2)2﹣4x(x+1),其中x=2.21.(6分)判斷代數(shù)式的值能否等于-1?并說明理由.22.(8分)如圖1,在四邊形ABCD中,∠DAB被對角線AC平分,且AC2=AB?AD,我們稱該四邊形為“可分四邊形”,∠DAB稱為“可分角”.(1)如圖2,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,求證:△DAC∽△CAB.(2)如圖2,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,如果∠DCB=∠DAB,則∠DAB=°(3)現(xiàn)有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,BC=2,∠D=90°,求AD的長.23.(8分)八年級教師對試卷講評課中學生參與的深度與廣度進行評價調(diào)查,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名八年級學生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖均不完整),請根據(jù)圖中所給信息解答下列問題:(1)在這次評價中,一共抽查了多少名學生?(2)求扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù);(3)請將條形統(tǒng)計圖補充完整.24.(8分)如圖,已知點A的坐標為(a,4)(其中a<-3),射線OA與反比例函數(shù)的圖象交于點P,點B,C分別在函數(shù)的圖象上,且AB∥x軸,AC∥y軸,連結(jié)BO,CO,BP,CP.(1)當a=-6,求線段AC的長;(2)當AB=BO時,求點A的坐標;(3)求證:.25.(10分)如圖,點B、E、C、F在一條直線上,AB=DF,AC=DE,BE=FC.連接AF、BD.求證:四邊形ABDF是平行四邊形.26.(10分)如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFMN的一邊MN在邊BC上,頂點E、F分別在AB、AC上,其中BC=24cm,高AD=12cm.(1)求證:△AEF∽△ABC:(2)求正方形EFMN的邊長.
參考答案一、選擇題(每小題3分,共30分)1、C【解析】
根據(jù)點P所在象限先確定P點橫縱坐標都是負數(shù),根據(jù)P到x軸和y軸的距離確定點的坐標.【詳解】解:∵點P(x,y)在第三象限,
∴P點橫縱坐標都是負數(shù),
∵P到x軸和y軸的距離分別為3、4,
∴點P的坐標為(-4,-3).
故選:C.【點睛】此題主要考查了點的坐標,關鍵是掌握到x軸的距離=縱坐標的絕對值,到y(tǒng)軸的距離=橫坐標的絕對值.2、A【解析】
直接根據(jù)兩函數(shù)圖象的交點求出不等式的解集,再在數(shù)軸上表示出來即可.【詳解】解:∵由函數(shù)圖象可知,當x>-2時,一次函數(shù)y=3x+b的圖象在函數(shù)y=ax-3的圖象的上方,∴不等式3x+b>ax-3的解集為:x>-2,在數(shù)軸上表示為:故選:A.【點睛】本題考查的是一次函數(shù)與一元一次不等式,能利用函數(shù)圖象求出不等式的解集是解答此題的關鍵.3、B【解析】
證明AC∥DE,再由條件CE∥AD可證明四邊形ACED是平行四邊形;根據(jù)線段的垂直平分線證明AE=EB可得△BCE是等腰三角形;首先利用三角函數(shù)計算出AD=4,CD=2,再算出AB長可得四邊形ACEB的周長是10+2,利用△ACB和△CBE的面積和可得四邊形ACEB的面積.【詳解】①∵∠ACB=90°,DE⊥BC,∴∠ACD=∠CDE=90°,∴AC∥DE,∵CE∥AD,∴四邊形ACED是平行四邊形,所以①正確;②∵D是BC的中點,DE⊥BC,∴EC=EB,∴△BCE是等腰三角形,所以②正確;③∵AC=2,∠ADC=30°,∴AD=4,CD=2,∵四邊形ACED是平行四邊形,∴CE=AD=4,∵CE=EB,∴EB=4,DB=2,∴CB=4,∴AB=,∴四邊形ACEB的周長是10+2;所以③正確;④四邊形ACEB的面積:×2×4+×4×2=8,所以④錯誤,故選:C.【點睛】考查了平行四邊形的判定和性質(zhì)、等腰三角形的判定和性質(zhì)、特殊角三角函數(shù)、勾股定理、線段的垂直平分線的性質(zhì)等知識,解題的關鍵是熟練掌握平行四邊形的判定方法和等腰三角形的判定方法.4、C【解析】
把x=﹣1代入方程x2﹣ax=0得1+a=0,然后解關于a的方程即可.【詳解】解:把x=﹣1代入方程x2﹣ax=0得1+a=0,解得a=﹣1.故選:C.【點睛】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.5、C【解析】
判斷是否為直角三角形,只要驗證較短兩邊長的平方和等于最長邊的平方即可.【詳解】A、12+22=5≠32,故不能組成直角三角形,錯誤;B、42+62≠82,故不能組成直角三角形,錯誤;C、62+82=102,故能組成直角三角形,正確;D、52+42≠52,故不能組成直角三角形,錯誤.故選:C.【點睛】本題主要考查勾股定理的逆定理,掌握勾股定理的逆定理是解題的關鍵.6、B【解析】
延長DC至E,構(gòu)建直角△ADE,解直角△ADE求得DE,BE,根據(jù)BE解直角△CBE可得BC,CE,進而求解.【詳解】如圖,延長AB、DC相交于E,
在Rt△ADE中,可求得AE2-DE2=AD2,且AE=2AD,
計算得AE=16,DE=8,
于是BE=AE-AB=9,
在Rt△BEC中,可求得BC2+BE2=CE2,且CE=2BC,
∴BC=3,CE=6,
于是CD=DE-CE=2,
BC+CD=5.
故選B.【點睛】本題考查了勾股定理的運用,考查了30°角所對的直角邊是斜邊的一半的性質(zhì),本題中構(gòu)建直角△ADE求BE,是解題的關鍵.7、A【解析】
直接把點(1,m)代入正比例函數(shù)y=1x,求出m的值即可.【詳解】解:∵正比例函數(shù)y=1x的圖象經(jīng)過點(1,m),
∴m=1.
故選:A.【點睛】本題考查的是一次函數(shù)圖象上點的坐標特點,熟知一次函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關鍵.8、D【解析】
根據(jù)最簡二次根式的定義,可得答案.【詳解】A.被開方數(shù)含能開得盡方的因數(shù)=3,故A不符合題意;B.被開方數(shù)含分母,故B不符合題意;C.被開方數(shù)含能開得盡方的因數(shù)=2,故C不符合題意;D.被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式,故D符合題意;故選:D【點睛】此題考查最簡二次根式,解題關鍵在于掌握運算法則9、D【解析】分析:根據(jù)一元二次方程根的判別式進行計算即可.詳解:根據(jù)一元二次方程一元二次方程有兩個實數(shù)根,解得:,根據(jù)二次項系數(shù)可得:故選D.點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數(shù)根.當時,方程有兩個相等的實數(shù)根.當時,方程沒有實數(shù)根.10、D【解析】
必然事件就是一定發(fā)生的事件,據(jù)此判斷即可解答.【詳解】A、可能會出現(xiàn)兩正,兩反或一正一反或一反一正等4種情況,故錯誤,不合題意;
B、x應取不等于0的數(shù),故錯誤,不合題意;
C、取一個實數(shù),故錯誤,不合題意;
D、正確,屬于必然事件,符合題意;
故選:D.【點睛】本題考查了必然事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.二、填空題(每小題3分,共24分)11、.【解析】
如圖,作AH⊥BC于H.根據(jù)平行四邊形ABCD的面積=BC?AH,即可解決問題.【詳解】如圖,作AH⊥BC于H.在Rt△ABH中,∵AB=4,∠B=60°,∠AHB=90°,∴AH=AB?sin60°=2,∴平行四邊形ABCD的面積=BC?AH=16.故答案為:16.【點睛】本題考查了平行四邊形的性質(zhì)、解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考常考題型.12、【解析】
過點P作PE⊥AD交AD的延長線于點E,根據(jù)四邊形ABCD是平行四邊形,得到AB∥CD,推出PE=PD,由此得到當PB+PE最小時2PB+PD有最小值,此時P、B、E三點在同一條直線上,利用∠DAB=30°,∠AEP=90°,AB=6求出PB+PE的最小值=AB=3,得到2PB+PD的最小值等于6.【詳解】過點P作PE⊥AD交AD的延長線于點E,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠EDC=∠DAB=30°,∴PE=PD,∵2PB+PD=2(PB+PD)=2(PB+PE),∴當PB+PE最小時2PB+PD有最小值,此時P、B、E三點在同一條直線上,∵∠DAB=30°,∠AEP=90°,AB=6,∴PB+PE的最小值=AB=3,∴2PB+PD的最小值等于6,故答案為:6.【點睛】此題考查平行四邊形的性質(zhì),直角三角形含30°角的問題,動點問題,將線段2PB+PD轉(zhuǎn)化為三點共線的形式是解題的關鍵.13、【解析】
根據(jù)“左加右減”的法則求解即可.【詳解】解:將正比例函數(shù)的圖象向右平移2個單位,得=,故答案為:.【點睛】本題考查的是一次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象變換的法則是解答此題的關鍵.14、1.【解析】
把點A(1,1)代入函解析式即可求出m的值.【詳解】解:把點A(1,1)代入函解析式得1=,解得m=1.
故答案為:1.【點睛】本題考查反比例函數(shù)圖象上點的坐標特點,熟知反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解題的關鍵.15、70%【解析】
利用合格的人數(shù)即50-10-5=35人,除以總?cè)藬?shù)即可求得.【詳解】解:該班此次成績達到合格的同學占全班人數(shù)的百分比是×100%=70%.
故答案是:70%.【點睛】本題考查了讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.16、或【解析】
分兩種情況畫圖分析:點E在正方形內(nèi)部和點E在正方形外部.設,再利用等腰三角形的性質(zhì)以及三角形的內(nèi)角和分別求解即可.【詳解】解:如圖1,設如圖2,設,故答案為:135°或45°.【點睛】本題考查了正方形的性質(zhì),等腰三角形的性質(zhì),分類討論的數(shù)學思想,對點在正方形內(nèi)部或外部進行討論.解題關鍵是畫出相應的圖.17、1【解析】分析:根據(jù)頻率=或頻數(shù)=頻率×數(shù)據(jù)總和解答.詳解:由題意,該組的人數(shù)為:400×0.25=1(人).故答案為1.點睛:本題考查了頻數(shù)與頻率之間的計算,熟知頻數(shù)、頻率及樣本總數(shù)之間的關系是解決本題的關鍵.18、10℃【解析】
根據(jù)極差的定義進行計算即可【詳解】解:∵根據(jù)折線圖可得:本周的最高氣溫為30℃,最低氣溫為20℃,∴極差是:30-20=10(℃)故答案為:10℃【點睛】本題考查了極差的定義和折線圖,熟練掌握極差是最大值和最小值的差是解題的關鍵三、解答題(共66分)19、,,,;【解析】
題中沒指明△ODP的腰長與底分別是哪個邊,故應該分情況進行分析,從而求得點P的坐標.【詳解】(1)OD是等腰三角形的底邊時,此時P(2.5,4);(2)OD是等腰三角形的一條腰時:①若點O是頂角頂點時,P點就是以點O為圓心,以5為半徑的弧與CB的交點,在直角?OPC中,CP===3,則P的坐標是(3,4);②若D是頂角頂點時,P點就是以點D為圓心,以5為半徑的弧與CB的交點,過D作DM⊥BC于點M,在直角?PDM中,PM==3,當P在M的左邊時,CP=5-3=2,則P的坐標是(2,4);當P在M的右側(cè)時,CP=5+3=8,則P的坐標是(8,4);故P的坐標為:(2.5,4);(3,4);(2,4)或(8,4).故答案為:(2.5,4);(3,4);(2,4)或(8,4)【點睛】本題考查了等腰三角形的性質(zhì)和勾股定理的運用解答,注意正確地進行分類,考慮到所有可能的情況是解題的關鍵.20、原式=﹣3x1+4,當x=2時,原式=﹣1.【解析】試題分析:原式利用完全平方公式,單項式乘以多項式法則計算,去括號合并得到最簡結(jié)果,把x的值代入計算即可求出值.試題解析:原式=x1+4x+4﹣4x1﹣4x=﹣3x1+4,當x=2時,原式=﹣6+4=﹣1.考點:整式的化簡求值.21、不能,理由見解析【解析】
先將原代數(shù)式化簡,再令化簡后的結(jié)果等于-1,解出a的值,由結(jié)合分式存在的意義可以得出結(jié)論.【詳解】原式=.當=?1時,解得:a=0,∵(a+1)(a?1)a≠0,即a≠±1,a≠0,∴代數(shù)式的值不能等于?1.【點睛】此題考查分式的化簡求值,解題關鍵在于掌握運算法則22、(1)見解析;(2)120°;(3)【解析】
(1)先判斷出,即可得出結(jié)論;
(2)由已知條件可證得△ADC∽△ACB,得出D=∠4,再由已知條件和三角形內(nèi)角和定理得出∠1+2∠1=180°,求出∠1=60°,即可得出∠DAB的度數(shù);
(3)由已知得出AC2=AB?AD,∠DAC=∠CAB,證出△ADC∽△ACB,得出∠D=∠ACB=90°,由勾股定理求出AB,即可得出AD的長.【詳解】(1)證明:∵四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,∴AC2=AB?AD,∴,∵∠DAB為“可分角”,∴∠CAD=∠BAC,∴△DAC∽△CAB;(2)解:如圖所示:∵AC平分∠DAB,∴∠1=∠2,∵AC2=AB?AD,∴AD:AC=AC:AB,∴△ADC∽△ACB,∴∠D=∠4,∵∠DCB=∠DAB,∴∠DCB=∠3+∠4=2∠1,∵∠1+∠D+∠3=∠1+∠4+∠3=180°,∴∠1+2∠1=180°,解得:∠1=60°,∴∠DAB=120°;故答案為:120;(3)解:∵四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,∴AC2=AB?AD,∠DAC=∠CAB,∴AD:AC=AC:AB,∴△ADC∽△ACB,∴∠D=∠ACB=90°,∴AB=,∴AD=.故答案為.【點睛】此題考查相似形綜合題目,相似三角形的判定與性質(zhì),三角形內(nèi)角和定理,勾股定理,新定義四邊形,熟練掌握新定義四邊形,證明三角形相似是解決問題的關鍵.23、(1)560人;(2)54°;(3)補圖見解析.【解析】分析:(1)由“專注聽講”的學生人數(shù)除以占的百分比求出調(diào)查學生總數(shù)即可;(2)由“主動質(zhì)疑”占的百分比乘以360°即可得到結(jié)果;(3)求出“講解題目”的學生數(shù),補全統(tǒng)計圖即可;詳解:(1)根據(jù)題意得:224÷40%=560(名),則在這次評價中,一個調(diào)查了560名學生;故答案為:560;(2)根據(jù)題意得:×360°=54°,則在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)為54度;故答案為:54;(3)“講解題目”的人數(shù)為560-(84+168+224)=84,補全統(tǒng)計圖如下:點睛:此題考查了頻率(數(shù))分布直方圖,扇形統(tǒng)計圖,以及用樣本估計總體,弄清題中的數(shù)據(jù)是解本題的關鍵.24、(1);(2);(3)見解析【解析】
(1)當時,由于軸,所以點的橫坐標
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中學教育教學改革制度
- 交通肇事逃逸處理制度
- 2026年環(huán)境保護知識環(huán)境監(jiān)測與治理技術模擬題
- 2026年京東技術面試題及答案詳解
- 2025年企業(yè)產(chǎn)品水足跡標簽申請代理合同
- 2025年管轄權異議申請書(被告提交)
- 《JBT 14674-2024風力發(fā)電機組 變槳齒輪箱》專題研究報告
- 檢驗科實驗室廢水的處理制度及流程
- 2025年三臺縣幼兒園教師招教考試備考題庫含答案解析(必刷)
- 2025年黎城縣招教考試備考題庫帶答案解析(必刷)
- 人教版(2024)七年級上冊數(shù)學期末綜合檢測試卷 3套(含答案)
- 研發(fā)資料規(guī)范管理制度(3篇)
- GB/T 16770.1-2025整體硬質(zhì)合金直柄立銑刀第1部分:型式與尺寸
- 工業(yè)產(chǎn)品銷售單位質(zhì)量安全日管控周排查月調(diào)度檢查記錄表
- 2025年風險管理自查報告
- 2026年中國煤炭資源行業(yè)投資前景分析研究報告
- 項目成本控制動態(tài)監(jiān)測表模板
- DBJ46-074-2025 海南省市政道路瀝青路面建設技術標準
- 幼兒園小班語言《大一歲了》課件
- GB/T 14071-2025林木品種審定規(guī)范
- 移風易俗問答題目及答案
評論
0/150
提交評論