版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下表是某校合唱團(tuán)成員的年齡分布.年齡/歲13141516頻數(shù)515x對于不同的x,下列關(guān)于年齡的統(tǒng)計(jì)量不會(huì)發(fā)生改變的是()A.眾數(shù)、中位數(shù) B.平均數(shù)、中位數(shù) C.平均數(shù)、方差 D.中位數(shù)、方差2.的平方根是()A.2 B. C.±2 D.±3.菱形ABCD中,對角線AC、BD相交于點(diǎn)O,H為AD邊中點(diǎn),菱形ABCD的周長為28,則OH的長等于()A.3.5 B.4 C.7 D.144.一元二次方程x2-2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-25.將一圓形紙片對折后再對折,得到下圖,然后沿著圖中的虛線剪開,得到兩部分,其中一部分展開后的平面圖形是()A. B. C. D.6.下列關(guān)于x的方程一定有實(shí)數(shù)解的是()A. B.C. D.7.如圖是由5個(gè)大小相同的正方體組成的幾何體,則該幾何體的主視圖是()A. B. C. D.8.如圖,BC⊥AE于點(diǎn)C,CD∥AB,∠B=55°,則∠1等于()A.35° B.45° C.55° D.25°9.小明家1至6月份的用水量統(tǒng)計(jì)如圖所示,關(guān)于這組數(shù)據(jù),下列說法錯(cuò)誤的是().A.眾數(shù)是6噸 B.平均數(shù)是5噸 C.中位數(shù)是5噸 D.方差是10.方程(m–2)x2+3mx+1=0是關(guān)于x的一元二次方程,則()A.m≠±2 B.m=2 C.m=–2 D.m≠211.計(jì)算(1-)÷的結(jié)果是()A.x-1 B. C. D.12.如圖所示,有一條線段是()的中線,該線段是().A.線段GH B.線段AD C.線段AE D.線段AF二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=(x<0)的圖象相交于點(diǎn)A和點(diǎn)B.當(dāng)y1>y2>0時(shí),x的取值范圍是_____.14.關(guān)于的一元二次方程有兩個(gè)相等的實(shí)數(shù)根,則的值等于_____.15.如圖,兩個(gè)三角形相似,AD=2,AE=3,EC=1,則BD=_____.16.我們知道,四邊形具有不穩(wěn)定性.如圖,在平面直角坐標(biāo)系中,邊長為2的正方形ABCD的邊AB在x軸上,AB的中點(diǎn)是坐標(biāo)原點(diǎn)O,固定點(diǎn)A,B,把正方形沿箭頭方向推,使點(diǎn)D落在y軸正半軸上點(diǎn)D'處,則點(diǎn)C的對應(yīng)點(diǎn)C'的坐標(biāo)為_____.17.如圖,直線m∥n,以直線m上的點(diǎn)A為圓心,適當(dāng)長為半徑畫弧,分別交直線m,n于點(diǎn)B、C,連接AC、BC,若∠1=30°,則∠2=_____.18.一只螞蟻從數(shù)軸上一點(diǎn)A出發(fā),爬了7個(gè)單位長度到了+1,則點(diǎn)A所表示的數(shù)是_____三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,男生樓在女生樓的左側(cè),兩樓高度均為90m,樓間距為AB,冬至日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為CA;春分日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為DA,已知.求樓間距AB;若男生樓共30層,層高均為3m,請通過計(jì)算說明多少層以下會(huì)受到擋光的影響?參考數(shù)據(jù):,,,,,20.(6分)如圖,在△ABC中,D為AC上一點(diǎn),且CD=CB,以BC為直徑作☉O,交BD于點(diǎn)E,連接CE,過D作DFAB于點(diǎn)F,∠BCD=2∠ABD.(1)求證:AB是☉O的切線;(2)若∠A=60°,DF=,求☉O的直徑BC的長.21.(6分)綜合與探究如圖1,平面直角坐標(biāo)系中,拋物線y=ax2+bx+3與x軸分別交于點(diǎn)A(﹣2,0),B(4,0),與y軸交于點(diǎn)C,點(diǎn)D是y軸負(fù)半軸上一點(diǎn),直線BD與拋物線y=ax2+bx+3在第三象限交于點(diǎn)E(﹣4,y)點(diǎn)F是拋物線y=ax2+bx+3上的一點(diǎn),且點(diǎn)F在直線BE上方,將點(diǎn)F沿平行于x軸的直線向右平移m個(gè)單位長度后恰好落在直線BE上的點(diǎn)G處.(1)求拋物線y=ax2+bx+3的表達(dá)式,并求點(diǎn)E的坐標(biāo);(2)設(shè)點(diǎn)F的橫坐標(biāo)為x(﹣4<x<4),解決下列問題:①當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),求平移距離m的值;②用含x的式子表示平移距離m,并求m的最大值;(3)如圖2,過點(diǎn)F作x軸的垂線FP,交直線BE于點(diǎn)P,垂足為F,連接FD.是否存在點(diǎn)F,使△FDP與△FDG的面積比為1:2?若存在,直接寫出點(diǎn)F的坐標(biāo);若不存在,說明理由.22.(8分)如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B求證:△ADF∽△DEC;若AB=8,AD=6,AF=4,求AE的長.23.(8分)問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點(diǎn)D,則D為BC的中點(diǎn),∠BAD=∠BAC=60°,于是==遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點(diǎn)在同一條直線上,連接BD.(1)求證:△ADB≌△AEC;(2)若AD=2,BD=3,請計(jì)算線段CD的長;拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點(diǎn)C關(guān)于BM的對稱點(diǎn)E,連接AE并延長交BM于點(diǎn)F,連接CE,CF.(3)證明:△CEF是等邊三角形;(4)若AE=4,CE=1,求BF的長.24.(10分)如圖,把△EFP按圖示方式放置在菱形ABCD中,使得頂點(diǎn)E、F、P分別在線段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大?。唬?)若AP=6,求AE+AF的值.25.(10分)計(jì)算:2﹣1+|﹣|++2cos30°26.(12分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,DE交AC于點(diǎn)E,且∠A=∠ADE.(1)求證:DE是⊙O的切線;(2)若AD=16,DE=10,求BC的長.27.(12分)在中,,是的角平分線,交于點(diǎn).(1)求的長;(2)求的長.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】
由頻數(shù)分布表可知后兩組的頻數(shù)和為10,即可得知總?cè)藬?shù),結(jié)合前兩組的頻數(shù)知出現(xiàn)次數(shù)最多的數(shù)據(jù)及第15、16個(gè)數(shù)據(jù)的平均數(shù),可得答案.【詳解】由題中表格可知,年齡為15歲與年齡為16歲的頻數(shù)和為,則總?cè)藬?shù)為,故該組數(shù)據(jù)的眾數(shù)為14歲,中位數(shù)為(歲),所以對于不同的x,關(guān)于年齡的統(tǒng)計(jì)量不會(huì)發(fā)生改變的是眾數(shù)和中位數(shù),故選A.【點(diǎn)睛】本題主要考查頻數(shù)分布表及統(tǒng)計(jì)量的選擇,由表中數(shù)據(jù)得出數(shù)據(jù)的總數(shù)是根本,熟練掌握平均數(shù)、中位數(shù)、眾數(shù)及方差的定義和計(jì)算方法是解題的關(guān)鍵.2、D【解析】
先化簡,然后再根據(jù)平方根的定義求解即可.【詳解】∵=2,2的平方根是±,∴的平方根是±.故選D.【點(diǎn)睛】本題考查了平方根的定義以及算術(shù)平方根,先把正確化簡是解題的關(guān)鍵,本題比較容易出錯(cuò).3、A【解析】
根據(jù)菱形的四條邊都相等求出AB,菱形的對角線互相平分可得OB=OD,然后判斷出OH是△ABD的中位線,再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得OHAB.【詳解】∵菱形ABCD的周長為28,∴AB=28÷4=7,OB=OD.∵H為AD邊中點(diǎn),∴OH是△ABD的中位線,∴OHAB7=3.1.故選A.【點(diǎn)睛】本題考查了菱形的對角線互相平分的性質(zhì),三角形的中位線平行于第三邊并且等于第三邊的一半,熟記性質(zhì)與定理是解題的關(guān)鍵.4、A【解析】試題分析:原方程變形為:x(x-1)=0x1=0,x1=1.故選A.考點(diǎn):解一元二次方程-因式分解法.5、C【解析】
嚴(yán)格按照圖中的方法親自動(dòng)手操作一下,即可很直觀地呈現(xiàn)出來.【詳解】根據(jù)題意知,剪去的紙片一定是一個(gè)四邊形,且對角線互相垂直.故選C.【點(diǎn)睛】本題主要考查學(xué)生的動(dòng)手能力及空間想象能力.對于此類問題,學(xué)生只要親自動(dòng)手操作,答案就會(huì)很直觀地呈現(xiàn).6、A【解析】
根據(jù)一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根逐一判斷即可得.【詳解】A.x2-mx-1=0中△=m2+4>0,一定有兩個(gè)不相等的實(shí)數(shù)根,符合題意;
B.a(chǎn)x=3中當(dāng)a=0時(shí),方程無解,不符合題意;
C.由可解得不等式組無解,不符合題意;
D.有增根x=1,此方程無解,不符合題意;
故選A.【點(diǎn)睛】本題主要考查方程的解,解題的關(guān)鍵是掌握一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根.7、A【解析】試題分析:觀察圖形可知,該幾何體的主視圖是.故選A.考點(diǎn):簡單組合體的三視圖.8、A【解析】
根據(jù)垂直的定義得到∠∠BCE=90°,根據(jù)平行線的性質(zhì)求出∠BCD=55°,計(jì)算即可.【詳解】解:∵BC⊥AE,∴∠BCE=90°,∵CD∥AB,∠B=55°,∴∠BCD=∠B=55°,∴∠1=90°-55°=35°,故選:A.【點(diǎn)睛】本題考查的是平行線的性質(zhì)和垂直的定義,兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.9、C【解析】試題分析:根據(jù)眾數(shù)、平均數(shù)、中位數(shù)、方差:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù).將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個(gè)數(shù).一般地設(shè)n個(gè)數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].?dāng)?shù)據(jù):3,4,5,6,6,6,中位數(shù)是5.5,故選C考點(diǎn):1、方差;2、平均數(shù);3、中位數(shù);4、眾數(shù)10、D【解析】試題分析:根據(jù)一元二次方程的概念,可知m-2≠0,解得m≠2.故選D11、B【解析】
先計(jì)算括號內(nèi)分式的加法、將除式分子因式分解,再將除法轉(zhuǎn)化為乘法,約分即可得.【詳解】解:原式=(-)÷=?=,故選B.【點(diǎn)睛】本題主要考查分式的混合運(yùn)算,解題的關(guān)鍵是掌握分式混合運(yùn)算順序和運(yùn)算法則.12、B【解析】
根據(jù)三角形一邊的中點(diǎn)與此邊所對頂點(diǎn)的連線叫做三角形的中線逐一判斷即可得.【詳解】根據(jù)三角形中線的定義知:線段AD是△ABC的中線.故選B.【點(diǎn)睛】本題考查了三角形的中線,解題的關(guān)鍵是掌握三角形一邊的中點(diǎn)與此邊所對頂點(diǎn)的連線叫做三角形的中線.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、-2<x<-0.5【解析】
根據(jù)圖象可直接得到y(tǒng)1>y2>0時(shí)x的取值范圍.【詳解】根據(jù)圖象得:當(dāng)y1>y2>0時(shí),x的取值范圍是﹣2<x<﹣0.5,故答案為﹣2<x<﹣0.5.【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,熟悉待定系數(shù)法以及理解函數(shù)圖象與不等式的關(guān)系是解題的關(guān)鍵.14、【解析】分析:先根據(jù)根的判別式得到a-1=,把原式變形為,然后代入即可得出結(jié)果.詳解:由題意得:△=,∴,∴,即a(a-1)=1,∴a-1=,故答案為-3.點(diǎn)睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△<0,方程沒有實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè),相等的實(shí)數(shù)根,也考查了一元二次方程的定義.15、1【解析】
根據(jù)相似三角形的對應(yīng)邊的比相等列出比例式,計(jì)算即可.【詳解】∵△ADE∽△ACB,∴=,即=,解得:BD=1.故答案為1.【點(diǎn)睛】本題考查的是相似三角形的性質(zhì),掌握相似三角形的對應(yīng)邊的比相等是解題的關(guān)鍵.16、(2,)【解析】過C作CH于H,由題意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=,BH=AO所以C’(2,).故答案為(2,).17、75°【解析】試題解析:∵直線l1∥l2,∴故答案為18、﹣6或8【解析】試題解析:當(dāng)往右移動(dòng)時(shí),此時(shí)點(diǎn)A表示的點(diǎn)為﹣6,當(dāng)往左移動(dòng)時(shí),此時(shí)點(diǎn)A表示的點(diǎn)為8.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)的長為50m;(2)冬至日20層包括20層以下會(huì)受到擋光的影響,春分日6層包括6層以下會(huì)受到擋光的影響.【解析】
如圖,作于M,于則,設(shè)想辦法構(gòu)建方程即可解決問題.求出AC,AD,分兩種情形解決問題即可.【詳解】解:如圖,作于M,于則,設(shè).在中,,在中,,,,,的長為50m.由可知:,,,,,冬至日20層包括20層以下會(huì)受到擋光的影響,春分日6層包括6層以下會(huì)受到擋光的影響.【點(diǎn)睛】考查解直角三角形的應(yīng)用,解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.20、(1)證明過程見解析;(2)【解析】
(1)根據(jù)CB=CD得出∠CBD=∠CDB,然后結(jié)合∠BCD=2∠ABD得出∠ABD=∠BCE,從而得出∠CBD+∠ABD=∠CBD+∠BCE=90°,然后得出切線;(2)根據(jù)Rt△AFD和Rt△BFD的性質(zhì)得出AF和DF的長度,然后根據(jù)△ADF和△ACB相似得出相似比,從而得出BC的長度.【詳解】(1)∵CB=CD∴∠CBD=∠CDB又∵∠CEB=90°∴∠CBD+∠BCE=∠CDE+∠DCE∴∠BCE=∠DCE且∠BCD=2∠ABD∴∠ABD=∠BCE∴∠CBD+∠ABD=∠CBD+∠BCE=90°∴CB⊥AB垂足為B又∵CB為直徑∴AB是⊙O的切線.(2)∵∠A=60°,DF=∴在Rt△AFD中得出AF=1在Rt△BFD中得出DF=3∵∠ADF=∠ACB∠A=∠A∴△ADF∽△ACB∴即解得:CB=考點(diǎn):(1)圓的切線的判定;(2)三角函數(shù);(3)三角形相似的判定21、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐標(biāo)為(﹣3,0)或(﹣3,).【解析】
(3)先將A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出拋物線的表達(dá)式,再將E點(diǎn)坐標(biāo)代入表達(dá)式求出y的值即可;(3)①設(shè)直線BD的表達(dá)式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入求出k,b的值,再將x=0代入表達(dá)式求出D點(diǎn)坐標(biāo),當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),可得G點(diǎn)坐標(biāo),GF∥x軸,故可得F的縱坐標(biāo),再將y=﹣2代入拋物線的解析式求解可得點(diǎn)F的坐標(biāo),再根據(jù)m=FG即可得m的值;②設(shè)點(diǎn)F與點(diǎn)G的坐標(biāo),根據(jù)m=FG列出方程化簡可得出m的二次函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的圖象可得m的取值范圍;(2)分別分析當(dāng)點(diǎn)F在x軸的左側(cè)時(shí)與右側(cè)時(shí)的兩種情況,根據(jù)△FDP與△FDG的面積比為3:3,故PD:DG=3:3.已知FP∥HD,則FH:HG=3:3.再分別設(shè)出F,G點(diǎn)的坐標(biāo),再根據(jù)兩點(diǎn)關(guān)系列出等式化簡求解即可得F的坐標(biāo).【詳解】解:(3)將A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,解得:,∴拋物線的表達(dá)式為y=﹣x3+x+2,把E(﹣4,y)代入得:y=﹣6,∴點(diǎn)E的坐標(biāo)為(﹣4,﹣6).(3)①設(shè)直線BD的表達(dá)式為y=kx+b,將B(4,0),E(﹣4,﹣6)代入得:,解得:,∴直線BD的表達(dá)式為y=x﹣2.把x=0代入y=x﹣2得:y=﹣2,∴D(0,﹣2).當(dāng)點(diǎn)G與點(diǎn)D重合時(shí),G的坐標(biāo)為(0,﹣2).∵GF∥x軸,∴F的縱坐標(biāo)為﹣2.將y=﹣2代入拋物線的解析式得:﹣x3+x+2=﹣2,解得:x=+3或x=﹣+3.∵﹣4<x<4,∴點(diǎn)F的坐標(biāo)為(﹣+3,﹣2).∴m=FG=﹣3.②設(shè)點(diǎn)F的坐標(biāo)為(x,﹣x3+x+2),則點(diǎn)G的坐標(biāo)為(x+m,(x+m)﹣2),∴﹣x3+x+2=(x+m)﹣2,化簡得,m=﹣x3+4,∵﹣<0,∴m有最大值,當(dāng)x=0時(shí),m的最大值為4.(2)當(dāng)點(diǎn)F在x軸的左側(cè)時(shí),如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設(shè)F的坐標(biāo)為(x,﹣x3+x+2),則點(diǎn)G的坐標(biāo)為(﹣3x,﹣x﹣2),∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,解得:x=﹣3或x=4(舍去),∴點(diǎn)F的坐標(biāo)為(﹣3,0).當(dāng)點(diǎn)F在x軸的右側(cè)時(shí),如下圖所示:∵△FDP與△FDG的面積比為3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.設(shè)F的坐標(biāo)為(x,﹣x3+x+2),則點(diǎn)G的坐標(biāo)為(3x,x﹣2),∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,解得:x=﹣3或x=﹣﹣3(舍去),∴點(diǎn)F的坐標(biāo)為(﹣3,).綜上所述,點(diǎn)F的坐標(biāo)為(﹣3,0)或(﹣3,).【點(diǎn)睛】本題考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是熟練的掌握二次函數(shù)的應(yīng)用.22、(1)見解析(2)6【解析】
(1)利用對應(yīng)兩角相等,證明兩個(gè)三角形相似△ADF∽△DEC.(2)利用△ADF∽△DEC,可以求出線段DE的長度;然后在在Rt△ADE中,利用勾股定理求出線段AE的長度.【詳解】解:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC∴∠C+∠B=110°,∠ADF=∠DEC∵∠AFD+∠AFE=110°,∠AFE=∠B,∴∠AFD=∠C在△ADF與△DEC中,∵∠AFD=∠C,∠ADF=∠DEC,∴△ADF∽△DEC(2)∵四邊形ABCD是平行四邊形,∴CD=AB=1.由(1)知△ADF∽△DEC,∴,∴在Rt△ADE中,由勾股定理得:23、(1)見解析;(2)CD=;(3)見解析;(4)【解析】試題分析:遷移應(yīng)用:(1)如圖2中,只要證明∠DAB=∠CAE,即可根據(jù)SAS解決問題;
(2)結(jié)論:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD?cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解決問題;
拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.由BC=BE=BD=BA,F(xiàn)E=FC,推出A、D、E、C四點(diǎn)共圓,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等邊三角形;
(4)由AE=4,EC=EF=1,推出AH=HE=2,F(xiàn)H=3,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解決問題.試題解析:遷移應(yīng)用:(1)證明:如圖2,
∵∠BAC=∠DAE=120°,
∴∠DAB=∠CAE,
在△DAE和△EAC中,
DA=EA,∠DAB=∠EAC,AB=AC,
∴△DAB≌△EAC,
(2)結(jié)論:CD=AD+BD.
理由:如圖2-1中,作AH⊥CD于H.
∵△DAB≌△EAC,
∴BD=CE,
在Rt△ADH中,DH=AD?cos30°=AD,
∵AD=AE,AH⊥DE,
∴DH=HE,
∵CD=DE+EC=2DH+BD=AD+BD=.
拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.
∵四邊形ABCD是菱形,∠ABC=120°,
∴△ABD,△BDC是等邊三角形,
∴BA=BD=BC,
∵E、C關(guān)于BM對稱,
∴BC=BE=BD=BA,F(xiàn)E=FC,
∴A、D、E、C四點(diǎn)共圓,
∴∠ADC=∠AEC=120°,
∴∠FEC=60°,
∴△EFC是等邊三角形,
(4)∵AE=4,EC=EF=1,
∴AH=HE=2,F(xiàn)H=3,
在Rt△BHF中,∵∠BFH=30°,
∴=cos30°,
∴BF=.24、(1)∠EPF=120°;(2)AE+AF=6.【解析】試題分析:(1)過點(diǎn)P作PG⊥EF于G,解直角三角形即可得到結(jié)論;
(2)如圖2,過點(diǎn)P作PM⊥AB于M,PN⊥AD于N,證明△ABC≌△ADC,Rt△PME≌Rt△PNF,問題即可得證.試題解析:(1)如圖1,過點(diǎn)P作PG⊥EF于G,
∵PE=PF,
∴FG=EG=EF=2,∠FPG=∠EPG=∠EPF,
在△FPG中,sin∠FPG=,
∴∠FPG=60°,
∴∠EPF=2∠FPG=120°;
(2)如圖2,過點(diǎn)P作PM⊥AB于M,PN⊥AD于N,
∵四邊形ABCD是菱形,
∴AD=AB,DC=BC,
∴∠DAC=∠BAC,
∴PM=PN,
在Rt△PME于Rt△PNF中,,
∴Rt△PME≌Rt△PNF,
∴FN=EM,在Rt△PMA中,∠PMA=90°,∠PAM=∠DAB=30°,
∴AM=AP?cos30°=3,同理AN=3,
∴A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年人工智能技術(shù)與應(yīng)用考試題庫及答案詳解
- 運(yùn)城2025年山西運(yùn)城農(nóng)業(yè)職業(yè)技術(shù)學(xué)院招聘15人筆試歷年參考題庫附帶答案詳解
- 舟山2025年浙江舟山岱山醫(yī)療健康集團(tuán)緊缺專業(yè)人才招聘22人(一)筆試歷年參考題庫附帶答案詳解
- 滁州2025年安徽滁州全椒縣經(jīng)濟(jì)開發(fā)區(qū)綜合服務(wù)中心招聘工作人員筆試歷年參考題庫附帶答案詳解
- 昆明云南昆明市第二人民醫(yī)院融城老年病醫(yī)院招聘筆試歷年參考題庫附帶答案詳解
- 宣城2025年安徽宣城績溪縣幼兒園招聘編外聘用教師6人筆試歷年參考題庫附帶答案詳解
- 麗水2025年浙江麗水景寧畬族自治縣招聘教師5人筆試歷年參考題庫附帶答案詳解
- 2026年通信技術(shù)基礎(chǔ)應(yīng)用測試題
- 2026年網(wǎng)絡(luò)安全防御技術(shù)及實(shí)踐應(yīng)用模擬題
- 2026年建筑工程安全防護(hù)模擬試題庫
- 2025北京西城區(qū)初一(下)期末英語試題及答案
- 2026.01.01施行的《招標(biāo)人主體責(zé)任履行指引》
- DB11∕T 689-2025 既有建筑抗震加固技術(shù)規(guī)程
- 2025年湖南公務(wù)員《行政職業(yè)能力測驗(yàn)》試題及答案
- 提前招生面試制勝技巧
- 2024中國類風(fēng)濕關(guān)節(jié)炎診療指南課件
- 2026年中國家居行業(yè)發(fā)展展望及投資策略報(bào)告
- 陜西省西安鐵一中2026屆高一物理第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析
- DB3207∕T 1046-2023 香菇菌棒生產(chǎn)技術(shù)規(guī)程
- 2025-2030腦機(jī)接口神經(jīng)信號解碼芯片功耗降低技術(shù)路線圖報(bào)告
- 空調(diào)安裝應(yīng)急預(yù)案
評論
0/150
提交評論